Goal

- Hybrid OTA/UW communication scheme
- Implement necessary software to UAV/UUV in air and water

Motivations and Objectives

Motivations
- Current drones (ie. multirotors) have no capability to travel underwater and as such no need to communicate underwater. However, through recent research new multi-medium drones have arrived. RF(Radio Frequency) works well in the air but is not capable UW [1]. Using WHOI Modems we have created the first **Mixed Air-Water protocol for drones!**

Objectives
- Use WHOI Micromodems to control the drone underwater

Research Challenges

- Learning the MAVLink protocol and how it is used in modern GCS for remote drone control.
- Creating a full scale GCS that has all capabilities of a GCS and is able to send commands to the drone underwater.
- Create a new communication protocol for use underwater that would transmit the high rate MAVLink packets using the low rate underwater WHOI packets [2].

Acknowledgement

We would like to thank Prof. Pompili for his research work, equipment, guidance, and suggestions, as well as Prof. Diez for his guidance and expertise, and Marco Maia for his advice and help with testing our project in the water.

Methodology

- Implement both ends of communication scheme
 - Custom ground control software
 - Custom underwater protocol remapping

Goal

- Limited to 13 bit UW commands [3]
 - MAVLINK (Micro Air Vehicle Link Protocol) messages are too large
 - A Command mapping necessary
- Raspberry Pi multiplexes data from RF radio/acoustic modem
 - Maps acoustic commands
- UW communication range fluctuation
- Effects of transceiver orientation

Results

- UW Commands take approximately 1s to send
 - Sends basic "move" command
- Latency unavoidable - distribute control

Future Work

- Drone with autonomous control
 - UW packet latency too high for real time navigation
 - Move intelligence to autopilot computer
 - Reduce latency and detect necessary conditions that need to be send back to GCS
 - Reconfigure UW packet mapping to accommodate independent intelligence
 - Higher level commands (Close-Loop Operation)

References