Indoor Positioning System (IPS) with Bluetooth Beacons

Michael Feinstein, Chris Gary, Kyle Bailey, Arinze Umenyiora

{m.feinstein, chris.gary, kyle.bailey, aeu10}@rutgers.edu
Advisor: Prof. Waheed Bajwa

Goal

Develop a low-cost Bluetooth indoor positioning system to track a user's location indoors. To supplement the location and tracking functionality of GPS to enable a more immersive indoor experience.

Motivations and Objectives

- **Motivations**
 - To allow indoor location services since GPS fails to do so
 - To enhance the experience of museums, malls, and corporations, through the use of interactive directories and venue maps
 - To enable indoor tracking of employees such as security personnel

- **Existing Solutions**
 - Apple's indoor tracking requires use of Wi-Fi and motion data from the phone
 - Trilateration measures distance from a device using RSSI and Link Quality signal parameters
 - Dead Reckoning uses triangulation with the accelerometer and compass between signal strength updates
 - Fingerprinting uses RF signals to find a unique location map offline and uses location estimation online

- **Objectives**
 - A scalable passive system (requires an IOS application)
 - Portable & low energy (regulated battery power)
 - Incorporation of the magnetometer for physical phone's direction and error checking

Research Challenges

- UUID identification of Bluetooth beacons
- Location estimation algorithm
 - Nearest neighbor implementation
 - Use of onboard phone sensors for error checking

Implementation

- **Hardware**
 - Purchase Bluetooth modules
 - Voltage-Regulator Circuit for modules
 - Build circuit packaging to hang
 - Mount asymmetrically on floor plan
 - Grid the floor for sample taking

- **Software**
 - RSSI [dBm] sampling app
 - Online RF sample database
 - Device model, heading, name of user, UUID & 5 RSSI, timestamp
 - Location estimation algorithm

- **Cost breakdown** – 5 Beacons
 - Cost per device: $40.10
 - Total cost of system: $200.50

Results

- Theoretical tracking should produce a maximum error 0.57 meters (1.9 feet)
- Experimental tracking produces an error of 1.5 meters (4.9 feet)
- 20+ Hours of battery life for beacons

Future Works

- Business analytics (track many user’s locations, property, and statistics of traffic flow -> possible areas of higher revenue stream & energy efficiency of building)
- 3D printed enclosures for better portability, simpler installation, and a sleeker form factor
- Geo-fenced push notification to phone if near a beacon
- Estimation Algorithm: supplement with a Naive Bayes adaptive decision method

References

Acknowledgement

We would like to thank professor Waheed Bajwa for the support and guided instruction for our project.