Saurabh Modi, Rahul Patel, Adish Vakhariya
Chirayu Patel, Chhayang Patel
Advisor: Dr. Hana Godrich

Goal

- Design a wireless charging system that allows drones to autonomously find and land on a charging dock when low on power
- Utilize currently available wireless charging technology for smartphones to build the dock

Motivations and Objectives

- **Motivations**
 - Most commercial drones have a very limited battery life and only provide a few minutes of flight time
 - Expensive human operators are required to remove, recharge, and replace batteries, preventing drones from becoming truly autonomous

- **Objectives**
 - Design a low-cost, optimum-efficiency wireless charging solution for drones
 - Implement a computer vision algorithm allowing the onboard camera to identify the dock and safely land
 - Program an app displaying the charging state and current battery percentage using Bluetooth

Research Challenges

- Minimizing distance between the transmitting and receiving coils to increase charging efficiency
- Stepping up the output voltage of the wireless smartphone charger in order to meet the requirements of the LiPo battery
- Increasing the stability of the drone by using precise controls to maximize the probability of landing on the charger

Acknowledgement

We would like to thank Dr. Hana Godrich for providing us with many useful solutions, as well as all AR Drone developers for sharing their open source projects.

Methodology

Circuit Design

- Program the drone to autonomously navigate to the charging pad
- Use computer vision/image processing algorithms to identify the dock and land with an error of 1 cm
- Optimize the charging circuit voltage to deliver maximum power
- Design a user-friendly app to display information about the charging state

Image Processing

Goal

- Design a wireless charging system that allows drones to autonomously find and land on a charging dock when low on power
- Utilize currently available wireless charging technology for smartphones to build the dock

Motivations and Objectives

- **Motivations**
 - Most commercial drones have a very limited battery life and only provide a few minutes of flight time
 - Expensive human operators are required to remove, recharge, and replace batteries, preventing drones from becoming truly autonomous

- **Objectives**
 - Design a low-cost, optimum-efficiency wireless charging solution for drones
 - Implement a computer vision algorithm allowing the onboard camera to identify the dock and safely land
 - Program an app displaying the charging state and current battery percentage using Bluetooth

Research Challenges

- Minimizing distance between the transmitting and receiving coils to increase charging efficiency
- Stepping up the output voltage of the wireless smartphone charger in order to meet the requirements of the LiPo battery
- Increasing the stability of the drone by using precise controls to maximize the probability of landing on the charger

Acknowledgement

We would like to thank Dr. Hana Godrich for providing us with many useful solutions, as well as all AR Drone developers for sharing their open source projects.

References
