3.12. Problems

131

d. Apply the compression filter (3.10.10) to the approximate spectrum of Part b, and show that the corresponding compressed signal is in the time domain:

\[E_{\text{compr}}(t) = \frac{1}{\sqrt{2\pi}} \exp(j\omega_0 t) \hat{F}(-\omega_0 t) \]

where \(\hat{F}(\omega) \) is the Fourier transform of \(F(t) \). This is similar, but not quite identical, to the exact expression (3.10.14).

e. Show that Part c is a general result. Consider the stationary-phase approximation spectrum of Part a. Its inverse Fourier transform is:

\[\sqrt{\frac{2\pi}{j}} \int_{-\infty}^{\infty} \frac{2\pi i}{\hat{\theta}(t, \omega)} F(t, \omega) e^{j\omega t} e^{j\omega t} d\omega \]

Define the phase function \(\phi(\omega) = \hat{\theta}(t, \omega) - \omega t + \omega t \). Show that the stationary-phase approximation applied to this integral with respect to the phase function \(\phi(\omega) \) recovers the original waveform \(E(t) \).

[Hint: the condition \(\hat{\theta}(t, \omega) = \omega \) implies \(\hat{\theta}(t, \omega) (dt/d\omega) = 1 \).]

3.18 An envelope signal \(F(t) \) is processed through two successive pulse compression filters with chirping parameters \(\omega_1 \) and \(\omega_2 \), as shown below.

\[\begin{array}{c}
F(t) \\
G_1(\omega) \\
\downarrow \\
\frac{j\omega_1}{2} \\
G_2(\omega) \\
\downarrow \\
F_{\text{out}}(t)
\end{array} \]

where \(G_i(\omega) = e^{j\omega_1^2/2\omega_1}, i = 1, 2 \). Show that if the chirping parameter of the intermediate quadratic modulation is chosen to be \(\omega_0 = \omega_1 + \omega_2 \), then the overall output is a time-scaled version of the input:

\[F_{\text{out}}(t) = j \frac{\omega_2}{\omega_1} e^{j\omega_0 t^2/2\omega_1} F \left(\frac{-\omega_0 t}{\omega_1} \right) \]

In this chapter, we discuss wave propagation in anisotropic media that are linearly or circularly birefringent. In such media, uniform plane waves can be decomposed into two orthogonal polarization states (linear or circular) that propagate with two different speeds. The two states develop a phase difference as they propagate, which alters the total polarization of the wave. Such media are used in the construction of devices for generating different polarizations.

Linearly birefringent materials can be used to change one polarization into another, such as changing linear into circular. Examples are the so-called uniaxial crystals, such as calcite, quartz, ice, tourmaline, and sapphire.

Optically active or chiral media are circularly birefringent. Examples are sugar solutions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually most other natural substances. In such media, circularly polarized waves go through unchanged, with left- and right-circular polarizations propagating at different speeds. This difference causes linearly polarized waves to have their polarization plane rotate as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelectric media, which are ordinary isotropic materials (glass, water, conductors, plasmas) subjected to constant external magnetic fields that break their isotropy. Gyromagnetic media, such as ferrites subjected to magnetic fields, also become circularly birefringent.

We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic) and the type of constitutive relationships that lead to the corresponding birefringent behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two polarizations along two orthogonal directions.\(^1\) For waves propagating in the z-direction, we may use the two linear directions \(\{x, y\} \), or the two circular ones for right and left polarizations \(\{e_+, e_-\} \), where \(e_+ = \hat{x} - j\hat{y} \) and \(e_- = \hat{x} + j\hat{y} \).\(^2\) Indeed, we have the following identity relating the linear and circular bases:

\[^1\text{For complex-valued vectors } e_1, e_2, \text{ orthogonality is defined with conjugation: } e_1^* \cdot e_2 = 0.\]

\[^2\text{Note that } e_\pm \text{ satisfy: } e_+^* \cdot e_+ = 2, e_-^* \cdot e_- = 0, e_+ \times e_- = 2\hat{z}, \text{ and } \hat{z} \times \hat{e}_+ = \pm j\hat{e}_-.}\]
4.2 Uniaxial and Biaxial Media

The circular components \(E_+ \) and \(E_- \) represent right and left polarizations (in the IEEE convention) if the wave is moving in the positive \(z \)-direction, but left and right if it is moving in the negative \(z \)-direction.

Because the propagation medium is not isotropic, we need to start with the source-free Maxwell’s equations before we assume any particular constitutive relationships:

\[
\nabla \times E = -j\omega B, \quad \nabla \times H = j\omega D, \quad \nabla \cdot D = 0, \quad \nabla \cdot B = 0
\]

For a uniform plane wave propagating in the \(z \)-direction, we may replace the gradient by \(\hat{z} \hat{z} \hat{z} \). It follows that the curls \(\nabla \times E = \hat{\hat{\hat{\hat{z}}}} \hat{z} \hat{z} \hat{z} \hat{E} \) and \(\nabla \times H = \hat{\hat{\hat{\hat{z}}}} \hat{z} \hat{z} \hat{H} \) will be transverse to the \(z \)-direction. Then, Faraday’s and Ampère’s laws imply that \(D_z = 0 \) and \(B_z = 0 \), and hence both of Gauss’ laws are satisfied. Thus, we are left only with:

\[
\hat{\hat{\hat{\hat{z}}}} \hat{z} \hat{z} \hat{z} \hat{E} = -j\omega B
\]

\[
\hat{\hat{\hat{\hat{z}}}} \hat{z} \hat{z} \hat{z} \hat{H} = j\omega D
\]

These equations do not “see” the components \(E_z, H_z \). However, in all the cases that we consider here, the conditions \(D_z = B_z = 0 \) will imply also that \(E_z = H_z = 0 \). Thus, all fields are transverse, for example, \(E = \hat{x} E_x + \hat{y} E_y + \hat{z} E_z \). Equating \(x, y \) components in the two sides of Eq. (4.1.3), we find in the linear basis:

\[
\partial_z E_x = -j\omega B_y, \quad \partial_z E_y = j\omega B_x
\]

\[
\partial_z H_x = -j\omega D_y, \quad \partial_z H_y = j\omega D_x
\]

(4.1.4)

Using the vector property \(\hat{\hat{\hat{\hat{z}}}} \hat{z} \hat{z} \hat{z} \hat{e}_z = \mp j \hat{e}_z \) and equating circular components, we obtain the circular-version of Eq. (4.1.3) (after canceling some factors of \(j \)):

\[
\partial_z E_\pm = \mp \omega B_\mp
\]

\[
\partial_z H_\pm = \pm \omega D_\mp
\]

(4.1.5)

4.2 Uniaxial and Biaxial Media

In uniaxial and biaxial homogeneous anisotropic dielectrics, the \(D - E \) constitutive relationships are given by the following diagonal forms, where in the biaxial case all diagonal elements of the permittivity matrix are distinct:

\[
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix} =
\begin{bmatrix}
\epsilon_x & 0 & 0 \\
0 & \epsilon_o & 0 \\
0 & 0 & \epsilon_o
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
\text{ and }
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix} =
\begin{bmatrix}
\epsilon_1 & 0 & 0 \\
0 & \epsilon_2 & 0 \\
0 & 0 & \epsilon_3
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}
\]

(4.2.1)

For the uniaxial case, the \(x \)-axis is taken to be the \textit{extraordinary} axis with \(\epsilon_1 = \epsilon_o \), whereas the \(y \) and \(z \) axes are \textit{ordinary} axes with permittivities \(\epsilon_2 = \epsilon_3 = \epsilon_o \).

The ordinary \(z \)-axis was chosen to be the propagation direction in order for the transverse \(x, y \) axes to correspond to two different permittivities. In this respect, the uniaxial and biaxial cases are similar, and therefore, we will work with the biaxial case. Setting \(D_x = \epsilon_1 E_x \) and \(D_y = \epsilon_2 E_y \) in Eq. (4.1.4) and assuming \(B = \mu_0 H \), we have:

\[
\begin{align*}
\partial_z E_x &= -j\omega \mu_0 H_y, \quad \partial_z E_y = j\omega \mu_0 H_x \\
\partial_z H_x &= -j\omega \epsilon_1 E_x, \quad \partial_z H_y = j\omega \epsilon_2 E_y
\end{align*}
\]

(4.2.2)

Differentiating these once more with respect to \(z \), we obtain the decoupled Helmholtz equations for the \(x \)-polarized and \(y \)-polarized components:

\[
\begin{align*}
\partial_z^2 E_x &= -\omega^2 \mu_0 \epsilon_1 E_x \\
\partial_z^2 E_y &= -\omega^2 \mu_0 \epsilon_2 E_y
\end{align*}
\]

(4.2.3)

The forward-moving solutions are:

\[
E_x(z) = A e^{-jk_z z}, \quad k_1 = \omega \sqrt{\mu_0 \epsilon_1} = k_0 n_1
\]

\[
E_y(z) = B e^{-jk_z z}, \quad k_2 = \omega \sqrt{\mu_0 \epsilon_2} = k_0 n_2
\]

(4.2.4)

where \(k_0 = \omega \sqrt{\mu_0 \epsilon_0} = \omega / c_0 \) is the free-space wavenumber and we defined the refractive indices \(n_1 = \sqrt{\epsilon_1 / \epsilon_0} \) and \(n_2 = \sqrt{\epsilon_2 / \epsilon_0} \). Therefore, the total transverse field at \(z = 0 \) and at distance \(z = l \) inside the medium will be:

\[
E(0) = \hat{x} A + \hat{y} B
\]

\[
E(l) = \hat{x} A e^{-jk_z l} + \hat{y} B e^{-jk_z l} = [\hat{x} A + \hat{y} B e^{i(k_2 - k_1)l}] e^{-jk_z l}
\]

(4.2.5)

The relative phase \(\phi = (k_1 - k_2)l \) between the \(x \) and \(y \) components introduced by the propagation is called \textit{retardance}:

\[
\phi = (k_1 - k_2)l = (n_1 - n_2)k_0 l = (n_1 - n_2)2\pi l / \lambda
\]

(4.2.6)

where \(\lambda \) is the free-space wavelength. Thus, the polarization nature of the field keeps changing as it propagates.

In order to change linear into circular polarization, the wave may be launched into the birefringent medium with a linear polarization having equal \(x \) and \(y \) components. After it propagates a distance \(l \) such that \(\phi = (n_1 - n_2)k_0 l = \pi / 2 \), the wave will have changed into left-handed circular polarization:

\[
E(0) = A(\hat{x} + \hat{y})
\]

\[
E(l) = A(\hat{x} + \hat{y} e^{i\phi}) e^{-jk_z l} = A(\hat{x} + \hat{y}) e^{-jk_z l}
\]

(4.2.7)

Polarization-changing devices that employ this property are called \textit{retarders} and are shown in Fig. 4.2.1. The above example is referred to as a \textit{quarter-wave retarder} because the condition \(\phi = \pi / 2 \) may be written as \((n_1 - n_2)l = \lambda / 4 \).
4.3 Chiral Media

Ever since the first experimental observations of optical activity by Arago and Biot in the early 1800s and Fresnel’s explanation that optical rotation is due to circular birefringence, there have been many attempts to explain it at the molecular level. Pasteur was the first to postulate that optical activity is caused by the chirality of molecules. There exist several versions of constitutive relationships that lead to circular birefringence [720-736]. For single-frequency waves, they are all equivalent to each other. For our purposes, the following so-called Tellegen form is the most convenient [33]:

\[
D = \epsilon E - j\chi H \\
B = \mu H + j\mu E
\]

(4.3.1)

where \(\chi \) is a parameter describing the chirality properties of the medium.

It can be shown that the reality (for a lossless medium) and positivity of the energy density function \((E^* \cdot D + H^* \cdot B)/2 \) requires that the constitutive matrix

\[
\begin{bmatrix}
\epsilon & -j\chi \\
j\chi & \mu
\end{bmatrix}
\]

be hermitian and positive definite. This implies that \(\epsilon, \mu, \chi \) are real, and furthermore, that \(|\chi| < \sqrt{\mu/\epsilon} \). Using Eqs. (4.3.1) in Maxwell’s equations (4.1.5), we obtain:

\[
\frac{\partial}{\partial z} E_{\pm} = \mp \omega B_{\pm} = \mp \omega (\mu H_{\mp} + j\chi E_{\mp})
\]

\[
\frac{\partial}{\partial z} H_{\pm} = \pm \omega D_{\pm} = \pm \omega (\epsilon E_{\pm} - j\chi H_{\pm})
\]

(4.3.2)

Defining \(c = 1/\sqrt{\mu/\epsilon} \), \(\eta = \sqrt{\mu/\epsilon} \), \(k = \omega/c = \omega \sqrt{\mu/\epsilon} \), and the following real-valued dimensionless parameter \(a = c\chi / \sqrt{\mu/\epsilon} \) (so that \(|a| < 1\)), we may rewrite Eqs. (4.3.2) in the following matrix forms:

\[
\frac{\partial}{\partial z} \begin{bmatrix}
E_{\pm} \\
\eta H_{\pm}
\end{bmatrix} = \mp \begin{bmatrix}
jk\epsilon & k \\
-k & jk\epsilon
\end{bmatrix} \begin{bmatrix}
E_{\pm} \\
\eta H_{\pm}
\end{bmatrix}
\]

(4.3.3)

These matrix equations may be diagonalized by appropriate linear combinations. For example, we define the right-polarized (forward-moving) and left-polarized (backward-moving) waves for the \(\{E_+, H_+\} \) case:

\[
E_{R+} = \frac{1}{2} [E_+ - j\eta H_+] \\
E_{E+} = E_{R+} + E_{L+}
\]

\[
E_{L+} = \frac{1}{2} [E_+ + j\eta H_+] \\
H_+ = \frac{1}{j\eta} [E_{R+} - E_{L+}]
\]

(4.3.4)

It then follows from Eq. (4.3.3) that \(\{E_{R+}, E_{L+}\} \) will satisfy the decoupled equations:

\[
\frac{\partial}{\partial z} \begin{bmatrix}
E_{R+} \\
E_{L+}
\end{bmatrix} = \begin{bmatrix}
-jk_+ & 0 \\
0 & jk_+
\end{bmatrix} \begin{bmatrix}
E_{R+} \\
E_{L+}
\end{bmatrix} \Rightarrow E_{R+}(z) = A_+ e^{-jk_+z} \\
E_{L+}(z) = B_+ e^{jk_+z}
\]

(4.3.5)

where \(k_+, k_- \) are defined as follows:

\[
k_\pm = k(1 \pm a) = \omega \left(\sqrt{\mu/\epsilon} \pm \chi \right)
\]

(4.3.6)

We may also define circular refractive indices by

\[
n_\pm = n_0 \sqrt{\mu/\epsilon} \pm \chi
\]

where \(n_0 = n(1 \pm a) \) (4.3.7)

For the \(\{E_-, H_-\} \) circular components, we define the left-polarized (forward-moving) and right-polarized (backward-moving) fields by:

\[
E_{L-} = \frac{1}{2} [E_- + j\eta H_-] \\
E_{E-} = E_{L-} - E_{R-}
\]

\[
E_{R-} = \frac{1}{2} [E_- - j\eta H_-] \\
H_- = \frac{1}{j\eta} [E_{L-} - E_{R-}]
\]

(4.3.8)

Then, \(\{E_{L-}, E_{R-}\} \) will satisfy:

\[
\frac{\partial}{\partial z} \begin{bmatrix}
E_{L-} \\
E_{R-}
\end{bmatrix} = \begin{bmatrix}
-jk_- & 0 \\
0 & jk_-
\end{bmatrix} \begin{bmatrix}
E_{L-} \\
E_{R-}
\end{bmatrix} \Rightarrow E_{L-}(z) = A_- e^{-jk_-z} \\
E_{R-}(z) = B_- e^{jk_-z}
\]

(4.3.9)

In summary, we obtain the complete circular-basis fields \(E_\pm(z) \):

\[
E_+(z) = E_{R+}(z) + E_{L+}(z) = A_+ e^{-jk_+z} + B_+ e^{jk_+z} \\
E_-(z) = E_{L-}(z) + E_{R-}(z) = A_- e^{-jk_-z} + B_- e^{jk_-z}
\]

(4.3.10)

Thus, the \(E_+(z) \) circular component propagates forward with wavenumber \(k_+ \) and backward with \(k_- \), and the reverse is true of the \(E_-(z) \) component. The forward-moving...
4.3. Chiral Media

component of \(E_+ \) and the backward-moving component of \(E_- \), that is, \(E_{R_+} \) and \(E_{R_-} \), are both right-polarized and both propagate with the same wavenumber \(k_+ \). Similarly, the left-polarized waves \(E_{L_+} \) and \(E_{L_-} \) both propagate with \(k_- \).

Thus, a wave of given circular polarization (left or right) propagates with the same wavenumber \(k \). Similarly, the media are isotropic media in the presence of constant external magnetic fields.

Consider, next, the effect of natural rotation. We start with a linearly polarized field at \(z = 0 \) and decompose it into its circular components:

\[
E(0) = \hat{x} A_x + \hat{y} A_y = \hat{e}_+ A_+ + \hat{e}_- A_- \quad \text{with} \quad A_\pm = \frac{1}{2} (A_x \pm j A_y)
\]

where \(A_x, A_y \) must be real for linear polarization. Propagating the circular components forward by a distance \(l \) according to Eq. (4.3.10), we find:

\[
E(l) = \hat{e}_+ A_+ e^{-jk_+l} + \hat{e}_- A_- e^{-jk_-l} = \left[\hat{e}_+ A_+ e^{-j(k_+ - k_-)l/2} + \hat{e}_- A_- e^{j(k_+ - k_-)l/2} \right] e^{-j(k_+ + k_-)l/2}
\]

where we defined the angle of rotation:

\[
\phi = \frac{1}{2} (k_+ - k_-) l = ak l
\] (natural rotation) (4.3.12)

Going back to the linear basis, we find:

\[
\hat{e}_+ A_+ e^{-j\phi} + \hat{e}_- A_- e^{j\phi} = (\hat{x} - j\hat{y}) \frac{1}{2} (A_x + j A_y) e^{-j\phi} + (\hat{x} + j\hat{y}) \frac{1}{2} (A_x - j A_y) e^{j\phi}
\]

\[
= [\hat{x} \cos \phi - \hat{y} \sin \phi] A_x + [\hat{y} \cos \phi + \hat{x} \sin \phi] A_y
\]

\[
= \hat{x}' A_x + \hat{y}' A_y
\]

Therefore, at \(z = 0 \) and \(z = l \), we have:

\[
E(0) = [\hat{x} A_x + \hat{y} A_y]
\]

\[
E(l) = [\hat{x}' A_x + \hat{y}' A_y] e^{-j(k_+ + k_-)l/2}
\]

(4.3.13)

The new unit vectors \(\hat{x}' = \hat{x} \cos \phi - \hat{y} \sin \phi \) and \(\hat{y}' = \hat{x} \cos \phi + \hat{y} \sin \phi \) are recognized as the unit vectors rotated clockwise (if \(\phi > 0 \)) by the angle \(\phi \), as shown in Fig. 4.2.1 (for the case \(A_x \neq 0, A_y = 0 \)). Thus, the wave remains linearly polarized, but its polarization plane rotates as it propagates.

If the propagation is in the negative \(z \)-direction, then as follows from Eq. (4.3.10), the roles of \(k_+ \) and \(k_- \) are interchanged so that the rotation angle becomes \(\phi = (k_- - k_+)l/2 \), which is the negative of that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance \(l \), gets reflected, and travels back to the starting point, the total angle of rotation will be zero. By contrast, in the Faraday rotation case, the angle keeps increasing so that it doubles after a round trip (see Problem 4.10.)

4.4 Gyrotropic Media

Gyrotropic\(^1\) media are isotropic media in the presence of constant external magnetic fields. A gyroelectric medium (at frequency \(\omega \)) has constitutive relationships:

\[
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix} =
\begin{bmatrix}
\varepsilon_1 + j \varepsilon_2 & 0 & 0 \\
0 & \varepsilon_1 & 0 \\
0 & 0 & \varepsilon_3
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix},
B = \mu H
\]

(4.3.1)

For a lossless medium, the positivity of the energy density function requires that the permittivity matrix be hermitian and positive-definite, which implies that \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) are real, and moreover, \(\varepsilon_1 > 0, |\varepsilon_2| \leq \varepsilon_1, \) and \(\varepsilon_3 > 0 \). The quantity \(\varepsilon_2 \) is proportional to the external magnetic field and reverses sign with the direction of that field.

A gyromagnetic medium, such as a ferrite in the presence of a magnetic field, has similar constitutive relationships, but with the roles of \(D \) and \(H \) interchanged:

\[
\begin{bmatrix}
B_x \\
B_y \\
B_z
\end{bmatrix} =
\begin{bmatrix}
\mu_1 + j \mu_2 & 0 & 0 \\
0 & \mu_1 & 0 \\
0 & 0 & \mu_3
\end{bmatrix}
\begin{bmatrix}
H_x \\
H_y \\
H_z
\end{bmatrix},
D = c E
\]

(4.3.3)

where again \(\mu_1 > 0, |\mu_2| \leq \mu_1, \) and \(\mu_3 > 0 \) for a lossless medium.

In the circular basis of Eq. (4.1.1), the above gyroscopic constitutive relationships take the simplified forms:

\[
D_\pm = (\varepsilon_1 \pm \varepsilon_2) E_\pm, \quad B_\pm = \mu H_\pm, \quad (\text{gyroelectric})
\]

(4.3.5)

\[
D_\pm = (\mu_1 \pm \mu_2) H_\pm, \quad D_\pm = c E_\pm, \quad (\text{gyromagnetic})
\]

where we ignored the \(z \)-components, which are zero for a uniform plane wave propagating in the \(z \)-direction. For example,

\[
D_\pm \pm j D_y = (\varepsilon_1 E_x + j \varepsilon_2 E_y) \pm j (\varepsilon_1 E_y - j \varepsilon_2 E_x) = (\varepsilon_1 \pm \varepsilon_2) (E_x \pm j E_y)
\]

Next, we solve Eqs. (4.1.5) for the forward and backward circular-basis waves. Considering the gyroelectric case first, we define the following quantities:

\[
\varepsilon_\pm = \varepsilon_1 \pm \varepsilon_2, \quad k_\pm = \omega \sqrt{\mu \varepsilon_\pm}, \quad \eta_\pm = \sqrt{\frac{\mu}{\varepsilon_\pm}}
\]

(4.4.4)

Using these definitions and the constitutive relations \(D_\pm = \varepsilon_\pm E_\pm \), Eqs. (4.1.5) may be rearranged into the following matrix forms:

\[
\frac{\partial}{\partial Z} \begin{bmatrix}
E_\pm \\
\eta_\pm H_\pm
\end{bmatrix} = \begin{bmatrix}
0 & \mp k_\pm & 0 \\
\pm k_\pm & 0 & \mp \eta_\pm
\end{bmatrix} \begin{bmatrix}
E_\pm \\
\eta_\pm H_\pm
\end{bmatrix}
\]

(4.4.5)

These may be decoupled by defining forward- and backward-moving fields as in Eqs. (4.3.4) and (4.3.8), but using the corresponding circular impedances \(\eta_\pm \):

\[
E_{R_+} = \frac{1}{2} \left[E_+ + \eta_+ H_+ \right], \quad E_{R_-} = \frac{1}{2} \left[E_- + j \eta_- H_- \right]
\]

(4.4.6)

\[
E_{L_+} = \frac{1}{2} \left[E_+ + j \eta_+ H_+ \right], \quad E_{L_-} = \frac{1}{2} \left[E_- - j \eta_- H_- \right]
\]

(4.4.6)

\(\text{The term } \text{“gyrotropic” is sometimes also used to mean “optically active.”} \)
These satisfy the decoupled equations:

\[
\begin{align*}
\frac{\partial}{\partial z} \left[\begin{array}{c} E_{R+} \\ E_{E+} \\
\end{array} \right] &= \left[\begin{array}{cc}
-jk_+ & 0 \\
0 & jk_+ \\
\end{array} \right] \left[\begin{array}{c} E_{R+} \\ E_{E+} \\
\end{array} \right] \Rightarrow E_{R+}(z) = A_+ e^{-jk_+z} \\
E_{E+}(z) &= B_+ e^{jk_+z}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial}{\partial z} \left[\begin{array}{c} E_{E-} \\ E_{E-} \\
\end{array} \right] &= \left[\begin{array}{cc}
-jk_- & 0 \\
0 & jk_- \\
\end{array} \right] \left[\begin{array}{c} E_{E-} \\ E_{E-} \\
\end{array} \right] \Rightarrow E_{E-}(z) = A_- e^{-jk_-z} \\
E_{E-}(z) &= B_- e^{jk_-z}
\end{align*}
\]

Thus, the complete circular-basis fields \(E_\pm(z) \) are:

\[
\begin{align*}
E_+(z) &= E_{R+} (z) + E_{E+}(z) = A_+ e^{-jk_+z} + B_+ e^{jk_+z} \\
E_-(z) &= E_{E-} (z) + E_{E-}(z) = A_- e^{-jk_-z} + B_- e^{jk_-z}
\end{align*}
\]

Now, the \(E_+(z) \) circular component propagates forward and backward with the same wavenumber \(k_+ \), while \(E_-(z) \) propagates with \(k_- \). Eq. (4.3.13) and the steps leading to it remain valid here. The rotation of the polarization plane is referred to as the Faraday rotation. If the propagation is in the negative \(z \)-direction, then the roles of \(k_+ \) and \(k_- \) remain unchanged so that the rotation angle is still the same as that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance \(l \), gets reflected, and travels back to the starting point, the total angle of rotation will be double that of the single trip, that is, \(2\beta = (k_+ - k_-)l \).

Problems 1.10 and 4.12 discuss simple models of gyroelectric behavior for conductors and plasmas in the presence of an external magnetic field. Problem 4.14 develops the Appleton-Hartree formulas for plane waves propagating in plasmas, such as the ionosphere [737–741].

The gyromagnetic case is essentially identical to the gyroelectric one. Eqs. (4.4.5) to (4.4.8) remain the same, but with circular wavenumbers and impedances defined by:

\[
\mu_\pm = \mu_1 \pm \mu_2, \quad k_\pm = \omega \sqrt{\mu_\pm}, \quad \eta_\pm = \frac{\mu_\pm}{\varepsilon}
\]

Problems 4.13 discusses a model for magnetic resonance exhibiting gyromagnetic behavior. Magnetic resonance has many applications—from NMR imaging to ferrite microwave devices [742–753]. Historical overviews may be found in [751,753].

4.5 Linear and Circular Dichroism

Dichroic polarizers, such as polaroids, are linearly birefringent materials that have widely different attenuation coefficients along the two polarization directions. For a lossy material, the field solutions given in Eq. (4.2.4) are modified as follows:

\[
\begin{align*}
E_x(z) &= A e^{-jkxz} = A e^{-\alpha_1 x} e^{-j\beta_1 z} \quad k_1 = \omega \sqrt{\mu_1} = \beta_1 - j\alpha_1 \\
E_y(z) &= B e^{-jkxz} = B e^{-\alpha_2 x} e^{-j\beta_2 z} \quad k_2 = \omega \sqrt{\mu_2} = \beta_2 - j\alpha_2
\end{align*}
\]

where \(\alpha_1, \alpha_2 \) are the attenuation coefficients. Passing through a length \(l \) of such a material, the initial and output polarizations will be as follows:

\[
E(0) = \hat{x} A + \hat{y} B
\]

\[
E(l) = \hat{x} A e^{-j\beta_1 l} + \hat{y} B e^{-j\beta_2 l} = \left(\hat{x} A e^{-\alpha_1 l} + \hat{y} B e^{-\alpha_2 l} e^{j\phi} \right) e^{-j\beta_1 l}
\]

In addition to the phase change \(\phi = (\beta_1 - \beta_2)l \), the field amplitudes have attenuated by the unequal factors \(A_1 = e^{-\alpha_1 l} \) and \(A_2 = e^{-\alpha_2 l} \). The resulting polarization will be elliptic with unequal semi-axes. If \(\alpha_2 > \alpha_1 \), then \(A_2 < A_1 \) and the y-component can be ignored in favor of the x-component.

This is the basic principle by which a polaroid material lets through only a preferred linear polarization. An ideal linear polarizer would have \(A_1 = 1 \) and \(A_2 = 0 \), corresponding to \(\alpha_1 = 0 \) and \(\alpha_2 = \infty \). Typical values of the attenuations for commercially available polaroids are of the order of \(0.9 \) dB and \(40 \) dB, respectively.

Chiral media may exhibit circular dichroism [722,735], in which the circular wavenumbers become complex, \(k_\pm = \beta_\pm - j\alpha_\pm \). Eq. (4.3.11) reads now:

\[
E(l) = \hat{e}_+ A_+ e^{-j\beta_+ l} + \hat{e}_- A_- e^{-j\beta_- l}
\]

where we defined the complex rotation angle:

\[
\phi - j\psi = \frac{1}{2} \left(k_+ - k_- \right) l = \frac{1}{2} \left(\beta_+ - \beta_- \right) l - \frac{1}{2} \left(\alpha_+ - \alpha_- \right) l
\]

Going back to the linear basis as in Eq. (4.3.13), we obtain:

\[
\begin{align*}
E(0) &= \left(\hat{x} A_x + \hat{y} A_y \right) \\
E(l) &= \left[\hat{x} A'_x + \hat{y} A'_y \right] e^{-j(\beta_+ + \beta_-) l/2}
\end{align*}
\]

where the defined complex rotation angle:

\[
\phi' - j\psi' = \frac{1}{2} \left(k_+ - k_- \right) l = \frac{1}{2} \left(\beta_+ - \beta_- \right) l - \frac{1}{2} \left(\alpha_+ - \alpha_- \right) l
\]

Because the amplitudes \(A'_x, A'_y \) are now complex-valued, the resulting polarization will be elliptical.

4.6 Oblique Propagation in Birefringent Media

Here, we discuss TE and TM waves propagating in oblique directions in linearly birefringent media. We will use these results in Chap. 8 to discuss reflection and refraction in such media, and to characterize the properties of birefringent multilayer structures.

Applications include the recently manufactured (by 3M, Inc.) multilayer birefringent polymer mirrors that have remarkable and unusual optical properties, collectively referred to as giant birefringent optics (GBO) [698].

Oblique propagation in chiral and gyrotropic media is discussed in the problems. Further discussions of wave propagation in anisotropic media may be found in [30–32].
4.6. Oblique Propagation in Birefringent Media

We recall from Sec. 2.10 that a uniform plane wave propagating in a lossless isotropic dielectric in the direction of a wave vector \(\mathbf{k} \) is given by:

\[
E(r) = E e^{-jkr}, \quad H(r) = H e^{-jkr}, \quad \text{with} \quad \hat{k} \cdot E = 0, \quad H = \frac{n}{\eta_0} \mathbf{k} \times E \quad (4.6.1)
\]

where \(n \) is the refractive index of the medium \(n = \sqrt{\epsilon/\epsilon_0}, \eta_0 \) the free-space impedance, and \(\mathbf{k} \) the unit-vector in the direction of \(\mathbf{k} \), so that,

\[
k = \mathbf{k} \hat{k}, \quad k = |k| = \omega \sqrt{\mu_0 \epsilon_0} = nk_0, \quad k_0 = \frac{\omega}{c_0} = \omega \sqrt{\mu_0 \epsilon_0} \quad (4.6.2)
\]

and \(k_0 \) is the free-space wavenumber.

In particular, following the notation of Fig. 2.10.1, if \(k \) is chosen to lie in the \(xy \) plane at an angle \(\theta \) from the \(z \)-axis, that is, \(\mathbf{k} = \hat{x} \sin \theta + \hat{z} \cos \theta \), then there will be two independent polarization solutions: TM, parallel, or p-polarization, and TE, perpendicular, or s-polarization, with fields given by

(TM, p-polarization): \(E = E_0 (\hat{x} \cos \theta - \hat{z} \sin \theta), \quad H = \frac{n}{\eta_0} E_0 \hat{y} \)

(TE, s-polarization): \(E = E_0 \hat{y}, \quad H = \frac{n}{\eta_0} E_0 (-\hat{x} \cos \theta + \hat{z} \sin \theta) \quad (4.6.3)\)

where, in both the TE and TM cases, the propagation phase factor \(e^{-jkr} \) is:

\[
e^{-jkr} = e^{-j(kx \cos \theta + k\hat{z} \sin \theta)} \quad (4.6.4)
\]

The designation as parallel or perpendicular is completely arbitrary here and is taken with respect to the \(xz \) plane. In the reflection and refraction problems considered in Chap. 7, the dielectric interface is taken to be the \(xy \) plane and the \(xz \) plane becomes the plane of incidence.

In a birefringent medium, the propagation of a uniform plane wave with arbitrary wave vector \(\mathbf{k} \) is much more difficult to describe. For example, the direction of the Poynting vector is not towards \(\mathbf{k} \), the electric field \(\mathbf{E} \) is not orthogonal to \(\mathbf{k} \), the simple dispersion relationship \(k = \omega \epsilon_0 c_0 / \mu_0 \) is not valid, and so on.

In the previous section, we considered the special case of propagation along an ordinary optic axis in a birefringent medium. Here, we discuss the somewhat more general case in which the \(x'y'z' \) coordinate axes coincide with the principal dielectric axes (so that the permittivity tensor is diagonal) and we take the wave vector \(\mathbf{k} \) to lie in the \(xz \) plane at an angle \(\theta \) from the \(z \)-axis. The geometry is depicted in Fig. 4.6.1.

Although this case is still not the most general one with a completely arbitrary direction for \(\mathbf{k} \), it does contain most of the essential features of propagation in birefringent media. The 3M multilayer films mentioned above have similar orientations for their optic axes [698].

The constitutive relations are assumed to be \(\mathbf{B} = \mu_0 \mathbf{H} \) and a diagonal permittivity tensor for \(\mathbf{D} \). Let \(\epsilon_1, \epsilon_2, \epsilon_3 \) be the permittivity values along the three principal axes and define the corresponding refractive indices \(n_i = \sqrt{\epsilon_i/\epsilon_0}, \quad i = 1, 2, 3 \). Then, the \(\mathbf{D} - \mathbf{E} \) relationship becomes:

\[
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix} =
\begin{bmatrix}
\epsilon_1 & 0 & 0 \\
0 & \epsilon_2 & 0 \\
0 & 0 & \epsilon_3
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix} = \epsilon_0
\begin{bmatrix}
n_1^2 & 0 & 0 \\
0 & n_2^2 & 0 \\
0 & 0 & n_3^2
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix} \quad (4.6.5)
\]

For a biaxial medium, the three \(n_i \) are all different. For a uniaxial medium, we take the \(xy \)-axes to be ordinary, with \(n_1 = n_2 = n_o \), and the \(z \)-axis to be extraordinary, with \(n_3 = n_e \). The wave vector \(\mathbf{k} \) can be resolved along the \(z \) and \(x \) directions as follows:

\[
k = k \hat{x} = k (\hat{x} \sin \theta + \hat{z} \cos \theta) = \hat{x} k_x + \hat{z} k_z \quad (4.6.6)
\]

The \(\omega-k \) relationship is determined from the solution of Maxwell’s equations. By analogy with the isotropic case that has \(k = nk_0 = n\omega / c_0 \), we may define an effective refractive index \(N \) such that:

\[
k = Nk_0 = N \frac{\omega}{c_0} \quad \text{(effective refractive index)} \quad (4.6.7)
\]

We will see in Eq. (4.6.22) by solving Maxwell’s equations that \(N \) depends on the chosen polarization (according to Fig. 4.6.1) and on the wave vector direction \(\theta \):

\[
N = \left\{ \begin{array}{cl}
n_1 n_3, & \text{(TM, p-polarization)} \\
\sqrt{n_1^2 \sin^2 \theta + n_2^2 \cos^2 \theta}, & \text{(TE, s-polarization)} \\
n_2, & \end{array} \right. \quad (4.6.8)
\]

For the TM case, we may rewrite the \(N-\theta \) relationship in the form:

\[
\frac{1}{N^2} = \frac{\cos^2 \theta}{n_1^2} + \frac{\sin^2 \theta}{n_2^2} \quad \text{(effective TM index)} \quad (4.6.9)
\]

Multiplying by \(k^2 \) and using \(k_0 = k/N \), and \(k_x = k \sin \theta, k_z = k \cos \theta \), we obtain the \(\omega-k \) relationship for the TM case:

\[
\frac{\omega^2}{c_0^2} = \frac{k_x^2}{n_1^2} + \frac{k_z^2}{n_2^2} \quad \text{(TM, p-polarization)} \quad (4.6.10)
\]

Similarly, we have for the TE case:

\[1^{\text{In Sec. 4.2, the extraordinary axis was the } x\text{-axis.}}\]
4.6. Oblique Propagation in Birefringent Media

\[
\frac{\omega^2}{c_0^2} = \frac{k^2}{n_1^2} \quad \text{(TE, s-polarization)} \quad (4.6.11)
\]

Thus, the TE mode propagates as if the medium were isotropic with index \(n = n_2 \), whereas the TM mode propagates in a more complicated fashion. If the wave vector \(\mathbf{k} \) is along the ordinary \(x \)-axis (\(\theta = 90^\circ \)), then \(k_x = k_{11} = n_1 \omega / c_0 \) (this was the result of the previous section), and if \(\mathbf{k} \) is along the extraordinary \(z \)-axis (\(\theta = 0^\circ \)), then we have \(k = k_z = n_1 \omega / c_0 \).

For TM modes, the group velocity is not along \(\mathbf{k} \). In general, the group velocity depends on the \(\omega - k \) relationship and is computed as \(\mathbf{v} = \partial \omega / \partial \mathbf{k} \). From Eq. (4.6.10), we find the \(x \)- and \(z \)-components:

\[
\begin{align*}
\nu_x &= \frac{\partial \omega}{\partial k_x} = \frac{k_{11} c_0^2}{\omega n_1^2} = c_0 \frac{N}{n_1^2} \sin \theta \\
\nu_z &= \frac{\partial \omega}{\partial k_z} = \frac{k_{22} c_0^2}{\omega n_1^2} = c_0 \frac{N}{n_1^2} \cos \theta
\end{align*}
\quad (4.6.12)
\]

The velocity vector \(\mathbf{v} \) is not parallel to \(\mathbf{k} \). The angle \(\hat{\theta} \) that \(\mathbf{v} \) forms with the \(z \)-axis is given by \(\tan \hat{\theta} = \nu_x / \nu_z \). It follows from (4.6.12) that:

\[
\tan \hat{\theta} = \frac{n_1^2}{n_2^2} \tan \theta \quad \text{(group velocity direction)} \quad (4.6.13)
\]

Clearly, \(\hat{\theta} \neq \theta \) if \(n_1 \neq n_2 \). The relative directions of \(\mathbf{k} \) and \(\mathbf{v} \) are shown in Fig. 4.6.2. The group velocity is also equal to the energy transport velocity defined in terms of the Poynting vector \(\mathbf{P} \) and energy density \(w \) as \(\mathbf{v} = \mathbf{P} / w \). Thus, \(\mathbf{v} \) and \(\mathbf{P} \) have the same direction. Moreover, with the electric field being orthogonal to the Poynting vector, the angle \(\hat{\theta} \) is also equal to the angle the \(E \)-field forms with the \(x \)-axis.

![Fig. 4.6.2 Directions of group velocity, Poynting vector, wave vector, and electric field.](image)

Next, we derive Eqs. (4.6.8) for \(N \) and solve for the field components in the TM and TE cases. We look for propagating solutions of Maxwell’s equations of the type \(\mathbf{E}(r) = E e^{-jk r} \) and \(\mathbf{H}(r) = H e^{-jk r} \). Replacing the gradient operator by \(\nabla \rightarrow -j \mathbf{k} \) and canceling some factors of \(j \), Maxwell’s equations take the form:

\[
\mathbf{H} \cdot \mathbf{E} = \omega^2 \mu_0 \mathbf{H} \quad \mathbf{E} \cdot \mathbf{E} = \omega \mu_0 \mathbf{H} \quad (4.6.14)
\]

The last two equations are implied by the first two, as can be seen by dotting both sides of the first two with \(\mathbf{k} \). Replacing \(\mathbf{k} = k \mathbf{\hat{k}} = N k_0 \mathbf{\hat{k}} \), where \(N \) is still to be determined, we may solve Faraday’s law for \(\mathbf{H} \) in terms of \(E \):

\[
E = \frac{N}{\eta_0} \mathbf{\hat{k}} \times \mathbf{E} \quad (4.6.15)
\]

where we used \(\eta_0 = c_0 \mu_0 \). Then, Ampère’s law gives:

\[
D = -\frac{1}{\omega} \mathbf{k} \times \mathbf{H} = -\frac{1}{\omega} N \frac{\omega}{c_0} \mathbf{\hat{k}} \times \mathbf{H} = \frac{N^2}{\eta_0 c_0} \mathbf{\hat{k}} \times (\mathbf{E} \times \mathbf{\hat{k}}) \Rightarrow \mathbf{\hat{k}} \times (\mathbf{E} \times \mathbf{\hat{k}}) = \frac{1}{\eta_0 c_0 N^2} \mathbf{D}
\]

where we used \(c_0 \eta_0 = 1/c_0 \). The quantity \(\mathbf{\hat{k}} \times (\mathbf{E} \times \mathbf{\hat{k}}) \) is recognized as the component of \(\mathbf{E} \) that is transverse to the propagation unit vector \(\mathbf{\hat{k}} \). Using the BAC-CAB vector identity, we have \(\mathbf{\hat{k}} \times (\mathbf{E} \times \mathbf{\hat{k}}) = \mathbf{E} - \mathbf{\hat{k}} (\mathbf{\hat{k}} \cdot \mathbf{E}) \). Rearranging terms, we obtain:

\[
\mathbf{E} - \frac{1}{\eta_0 c_0 N^2} \mathbf{D} = \mathbf{\hat{k}} (\mathbf{\hat{k}} \cdot \mathbf{E}) \quad (4.6.16)
\]

Because \(\mathbf{D} \) is linear in \(\mathbf{E} \), this is a homogeneous linear equation. Therefore, in order to have a nonzero solution, its determinant must be zero. This provides a condition from which \(N \) can be determined.

To obtain both the TE and TM solutions, we assume initially that \(\mathbf{E} \) has all its three components and rewrite Eq. (4.6.16) component-wise. Using Eq. (4.6.5) and noting that \(\mathbf{\hat{k}} \cdot \mathbf{E} = E_x \sin \theta + E_z \cos \theta \), we obtain the homogeneous linear system:

\[
\begin{align*}
\left(1 - \frac{n_1^2}{N^2} \right) E_x &= (E_x \sin \theta + E_z \cos \theta) \sin \theta \\
\left(1 - \frac{n_1^2}{N^2} \right) E_y &= 0 \\
\left(1 - \frac{n_1^2}{N^2} \right) E_z &= (E_x \sin \theta + E_z \cos \theta) \cos \theta
\end{align*}
\quad (4.6.17)
\]

The TE case has \(E_x \neq 0 \) and \(E_x = E_z = 0 \), whereas the TM case has \(E_x \neq 0 \), \(E_x \neq 0 \), and \(E_y = 0 \). Thus, the two cases decouple.

In the TE case, the second of Eqs. (4.6.17) immediately implies that \(N = n_2 \). Setting \(\mathbf{E} = E_0 \mathbf{\hat{y}} \) and using \(\mathbf{k} \times \mathbf{\hat{y}} = -\mathbf{\hat{x}} \sin \theta - \mathbf{\hat{z}} \cos \theta \), we obtain the TE solution:
4.6. Oblique Propagation in Birefringent Media

\[E(r) = E_0 \hat{y} e^{-jk \cdot r} \] (4.6.18)

\[H(r) = \frac{n_2}{n_0} E_0 (-\hat{x} \cos \theta + \hat{z} \sin \theta) e^{-jk \cdot r} \] (TE)

where the TE propagation phase factor is:

\[e^{-jk \cdot r} = e^{-jk_0 n_1 (z \cos \theta + x \sin \theta)} \] (TE propagation factor) (4.6.19)

The TM case requires a little more work. The linear system (4.6.17) becomes now:

\[\begin{align*}
 (1 - \frac{n_1^2}{N^2}) E_x &= (E_x \sin \theta + E_z \cos \theta) \sin \theta \\
 (1 - \frac{n_3^2}{N^2}) E_z &= (E_x \sin \theta + E_z \cos \theta) \cos \theta
\end{align*} \] (4.6.20)

Using the identity \(\sin^2 \theta + \cos^2 \theta = 1 \), we may rewrite Eq. (4.6.20) in the matrix form:

\[\begin{bmatrix} \cos^2 \theta - \frac{n_1^2}{N^2} & -\sin \theta \cos \theta \\
 -\sin \theta \cos \theta & \sin^2 \theta - \frac{n_3^2}{N^2} \end{bmatrix} \begin{bmatrix} E_x \\ E_z \end{bmatrix} = 0 \] (4.6.21)

Setting the determinant of the coefficient matrix to zero, we obtain the desired condition on \(N \) in order that a non-zero solution \(E_x, E_z \) exist:

\[(\cos^2 \theta - \frac{n_1^2}{N^2})(\sin^2 \theta - \frac{n_3^2}{N^2}) - \sin^2 \theta \cos^2 \theta = 0 \] (4.6.22)

This can be solved for \(N^2 \) to give Eq. (4.6.9). From it, we may also derive the following relationship, which will prove useful in applying Snell’s law in birefringent media:

\[N \cos \theta = \frac{n_1}{n_3} \sqrt{n_1^2 - N^2 \sin^2 \theta} = n_1 \sqrt{1 - \frac{N^2 \sin^2 \theta}{n_3^2}} \] (4.6.23)

With the help of the relationships given in Problem 4.16, the solution of the homogeneous system (4.6.20) is found to be, up to a proportionality constant:

\[E_x = A \frac{n_1}{n_3} \cos \theta, \quad E_z = -A \frac{n_1}{n_3} \sin \theta \] (4.6.24)

The constant \(A \) can be expressed in terms of the total magnitude of the field \(E_0 = |E| = \sqrt{|E_x|^2 + |E_z|^2} \). Using the relationship (4.7.11), we find (assuming \(A > 0 \)):

\[A = \frac{E_0}{\sqrt{n_1^2 + n_3^2 - N^2}} \] (4.6.25)

The magnetic field \(H \) can also be expressed in terms of the constant \(A \). We have:

\[H = \frac{N}{\eta_0} \hat{k} \times E = \frac{N}{\eta_0} (\hat{x} \sin \theta + \hat{z} \cos \theta) \times (\hat{x} E_x + \hat{z} E_z) \]

\[= \frac{N}{\eta_0} \hat{y} (E_x \cos \theta - E_z \sin \theta) = \frac{N}{\eta_0} \hat{y} A \left(\frac{n_1}{n_3} \sin \theta - \frac{n_3}{n_1} \cos \theta \right) \] (4.6.26)

where we used Eq. (4.7.10). In summary, the complete TM solution is:

\[E(r) = E_0 \frac{N}{\sqrt{n_1^2 + n_3^2 - N^2}} \left(\frac{N}{\eta_0} \hat{y} A \left(\frac{n_1}{n_3} \sin \theta - \frac{n_3}{n_1} \cos \theta \right) \right) e^{-jk \cdot r} \] (TM) (4.6.27)

where the TM propagation phase factor is:

\[e^{-jk \cdot r} = e^{-jk_0 n_2 (z \cos \theta + x \sin \theta)} \] (TM propagation factor) (4.6.28)

The solution has been put in a form that exhibits the proper limits at \(\theta = 0^\circ \) and \(90^\circ \). It agrees with Eq. (4.6.3) in the isotropic case. The angle that forms with the \(x \)-axis in Fig. 4.6.2 is given by \(\tan \vec{\theta} = \frac{E_z}{E_x} \) and agrees with Eq. (4.6.13).

Next, we derive expressions for the Poynting vector and energy densities. It turns out—as is common in propagation and waveguide problems—that the magnetic energy density is equal to the electric one. Using Eq. (4.6.27), we find:

\[\mathbf{P} = \frac{1}{2} \text{Re}(E \times H^*) = \frac{E_0^2}{2\eta_0} \frac{n_1}{n_3} \frac{N}{n_1^2 + n_3^2 - N^2} \left(\hat{x} \frac{n_1}{n_3} \sin \theta + \hat{z} \frac{n_3}{n_1} \cos \theta \right) \] (4.6.29)

and for the electric, magnetic, and total energy densities:

\[w_e = \frac{1}{2} \text{Re}(\mathbf{D} \cdot \mathbf{E}^*) = \frac{1}{4} \epsilon_0 (n_1^2 |E_x|^2 + n_3^2 |E_z|^2) = \frac{1}{4} \epsilon_0 E_0^2 \frac{n_1^2 n_3^2}{n_1^2 + n_3^2 - N^2} \] (4.6.30)

\[w_m = \frac{1}{2} \text{Re}(\mathbf{B} \cdot \mathbf{H}^*) = \frac{1}{4} \mu_0 |H_z|^2 = \frac{1}{4} \mu_0 E_0^2 \frac{n_1^2 n_3^2}{n_1^2 + n_3^2 - N^2} = w_e \]

\[w = w_e + w_m = 2w_e = \frac{1}{2} \epsilon_0 E_0^2 \frac{n_1^2 n_3^2}{n_1^2 + n_3^2 - N^2} \]

The vector \(\mathbf{P} \) is orthogonal to \(E \) and its direction is \(\vec{\theta} \) given by Eq. (4.6.13), as can be verified by taking the ratio \(\tan \vec{\theta} = P_x/P_z \). The energy transport velocity is the ratio of the energy flux to the energy density—it agrees with the group velocity (4.6.12):

\[\mathbf{v} = \frac{\mathbf{P}}{w} = c_0 \left(\hat{x} \frac{N}{n_1^3} \sin \theta + \hat{z} \frac{N}{n_1^3} \cos \theta \right) \] (4.6.31)
4.7 Problems

4.1 For the circular-polarization basis of Eq. (4.1.1), show
\[E = \hat{e}_r, E_r + \hat{e}_s, E_s \Rightarrow \hat{x} \times E = \hat{f}_r, E_r - \hat{f}_s, E_s \Rightarrow \hat{z} \times E = \pm jE_z \]

4.2 Show the component-wise Maxwell equations, Eqs. (4.1.4) and (4.1.5), with respect to the linear and circular polarization bases.

4.3 Suppose that the two unit vectors \(\{ \hat{x}, \hat{y} \} \) are rotated about the \(x \)-axis by an angle \(\phi \) resulting in \(\hat{x}' = \hat{x} \cos \phi + \hat{y} \sin \phi \) and \(\hat{y}' = \hat{y} \cos \phi - \hat{x} \sin \phi \). Show that the corresponding circular basis vectors \(\hat{e}_c = \hat{x}' \cos \theta + \hat{y}' \sin \theta \) and \(\hat{e}_c' = \hat{x}' \cos \theta' + \hat{y}' \sin \theta' \) change by the phase factors: \(\hat{e}'_c = e^{\pm \tilde{\phi}}\hat{e}_c \).

4.4 Consider a linearly birefringent \(90^\circ \) quarter-wave retarder. Show that the following input wave retarder?
\[E = A \hat{x} + B \hat{y} = A' \hat{x}' + B' \hat{y}' \]
where the new coefficients and the new basis vectors are related to the old ones by a rotation by an angle \(\phi \):
\[\begin{bmatrix} A' \\ B' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}, \quad \begin{bmatrix} \hat{x}' \\ \hat{y}' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} \]

4.5 A polarizer lets through linearly polarized light in the direction of the unit vector \(\hat{e}_p = \hat{x} \cos \theta_p + \hat{y} \sin \theta_p \), as shown in Fig. 4.7.1. The output of the polarizer propagates in the \(z \)-direction through a linearly birefringent retarder of length \(l \), with birefringent refractive indices \(n_1, n_2 \), and retardance \(\psi = (n_2 - n_1)k_0l \).

Fig. 4.7.1 Polarizer-analyzer measurement of birefringence.

The output \(E(l) \) of the birefringent sample goes through an analyzing linear polarizer that lets through polarizations along the unit vector \(\hat{e}_a = \hat{x} \cos \theta_a + \hat{y} \sin \theta_a \). Show that the light intensity at the output of the analyzer is given by:
\[I_a = |\hat{e}_a \cdot E(l)|^2 = |\cos \theta_a \cos \theta_p + \sin \theta_a \sin \theta_p| \]
For a circularly birefringent sample that introduces a natural or Faraday rotation of \(\phi = (k_1 - k_2)l/2 \), show that the output light intensity will be:
\[I_a = |\hat{e}_a \cdot E(l)|^2 = \cos^2(\theta_p - \theta_a - \phi) \]

For both the linear and circular cases, what are some convenient choices for \(\theta_a \) and \(\theta_p ? \}

4.6 A linearly polarized wave with polarization direction at an angle \(\theta \) with the \(x \)-axis goes through a circularly birefringent retarder that introduces an optical rotation by the angle \(\phi = (k_1 - k_2)l/2 \). Show that the input and output polarization directions will be:
\[\hat{x} \cos \theta + \hat{y} \sin \theta \rightarrow \hat{x} \cos(\theta - \phi) + \hat{y} \sin(\theta - \phi) \]

4.7 Show that an arbitrary polarization vector can be expressed as follows with respect to a linear basis \(\{ \hat{x}, \hat{y} \} \) and its rotated version \(\{ \hat{x}', \hat{y}' \} \):
\[E = A \hat{x} + B \hat{y} = A' \hat{x}' + B' \hat{y}' \]

where the new coefficients and the new basis vectors are related to the old ones by a rotation by an angle \(\phi \):
\[\begin{bmatrix} A' \\ B' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}, \quad \begin{bmatrix} \hat{x}' \\ \hat{y}' \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} \]

4.8 Show that the source-free Maxwell’s equations (4.1.2) for a chiral medium characterized by (4.3.1), may be cast in the matrix form, where \(k = \sqrt{\mu/c}, \quad \eta = \sqrt{\mu/c}, \quad a = \chi'/\sqrt{\mu c} \):
\[\nabla \times \begin{bmatrix} E \\ \eta H \end{bmatrix} = \begin{bmatrix} k a & -j k & 0 \\ -j k & k a & 0 \end{bmatrix} \begin{bmatrix} E \\ \eta H \end{bmatrix} \]

Show that these may be decoupled by forming the “right” and “left” polarized fields:
\[\nabla \times \begin{bmatrix} E_r \\ E_l \end{bmatrix} = \begin{bmatrix} k_s & 0 & -k_r \\ 0 & k_r & -k_s \end{bmatrix} \begin{bmatrix} E_r \\ E_l \end{bmatrix} \]
where \(k_s = k/(1 + a) \). Using these results, show that the possible plane-wave solutions propagating in the direction of a unit-vector \(\hat{k} \) are given by:
\[E(r) = E_0(\hat{p} - j \hat{s})e^{-jkr} \quad \text{and} \quad E(r) = E_0(\hat{p} + j \hat{s})e^{-jkr} \]
where \(k_r = k_s \hat{k} \) and \(\{ \hat{p}, \hat{s}, \hat{k} \} \) form a right-handed system of unit vectors, such as \(\{ \hat{x}', \hat{y}', \hat{z}' \} \) of Fig. 2.10.1. Determine expressions for the corresponding magnetic fields. What freedom do we have in selecting \(\{ \hat{p}, \hat{s} \} \) for a given direction \(\hat{k} \)?

4.9 Using Maxwell’s equations (4.1.2), show the following Poynting-vector relationships for an arbitrary source-free medium:
\[\nabla \cdot (E \times H^*) = j\omega (D^* \cdot E - B \cdot H^*) \]
\[\nabla \cdot \text{Re}(E \times H^*) = -\omega \text{Im}(D^* \cdot E + B^* \cdot H) \]

4.10 Show why a lossless medium must satisfy the condition \(\nabla \cdot \text{Re}(E \times H^*) = 0 \). Show that this condition requires that the energy function \(w = (D^* \cdot E + B^* \cdot H)/2 \) be real-valued. For a lossless chiral medium characterized by (4.3.1), show that the parameters \(\epsilon, \mu, \chi \) are required to be real. Moreover, show that the positivity of the energy function \(w > 0 \) requires that \(|\chi| < \sqrt{\mu c} \), as well as \(c > 0 \) and \(\mu > 0 \).
4.7. Problems

1. A uniform plane wave, \(E_{ix} \) and \(H_{ix} \), is propagating in the direction of the unit vector \(\hat{k} = \hat{z} \cos \theta + \hat{y} \sin \theta \) shown in Fig. 2.10.1 in a gyroelectric medium with constitutive relationships (4.4.1). Show that the equation of the solution is

\[
\hat{D}_T = \varepsilon \hat{E}_T \quad \text{(gyroelectric)}
\]

where the subscript \(T \) indicates the transverse (with respect to \(z \)) part of a vector, for example, \(\hat{D}_T = \hat{E}_T \times \hat{y} \).

2. A uniform plane wave, \(E_{iy} \) and \(H_{iy} \), is propagating in the direction of the unit vector \(\hat{k} = \hat{x} \sin \theta - \hat{z} \cos \theta \) shown in Fig. 2.10.1 in a gyroelectric medium with constitutive relationships (4.4.1). Show that the equation of the solution is

\[
\hat{B}_T = \mu \hat{H}_T \quad \text{(gyromagnetic)}
\]

where the subscript \(T \) indicates the transverse (with respect to \(z \)) part of a vector, for example, \(\hat{B}_T = \hat{H}_T \times \hat{z} \).

3. Conductors and plasmas exhibit gyroelectric behavior when they are in the presence of an external magnetic field. The equation of motion of conduction electrons in a constant magnetic field is

\[
\frac{dE}{dt} = ev \times B - m \hat{a} - m \hat{a} \times \hat{B},
\]

where \(v \) is the velocity of the electron, \(B \) is the magnetic field, and \(m \) is the mass of the electron.

4. If the magnetic field \(H_{ix} \) is applied to a magnetizable sample, the induced magnetic moment per unit volume (the magnetization) will have the form \(M_{ix} = \chi H_{ix} \), where \(\chi \) is the saturation magnetization due to the applied field acting alone. The phenomenological equations governing \(M_{ix} \), including a so-called Landau-Lifshitz damping term, are given by [750]:

\[
\frac{dM_{ix}}{dt} = \gamma (M_{ix} \times H_{ix}) - \frac{\alpha}{M_0 H_0} M_{ix} \times (M_{ix} \times H_{ix})
\]

where \(\gamma \) is the gyromagnetic ratio and \(\tau = 1/\alpha \), a relaxation time constant. Assuming that \(|H| \ll H_0 \) and \(|M| \ll M_0 \), show that the linearized version of this equation obtained by keeping only first order terms in \(H \) and \(M \) is:

\[
\frac{j \omega M_i}{\alpha} = \gamma \frac{\omega M_i}{\alpha} B_0 \times \hat{M} - \gamma \hat{M} \times \hat{B} - \frac{\alpha}{\gamma} \frac{\omega M_i}{\alpha} \times \hat{M}
\]

where \(\omega_M = \gamma M_0, \gamma \hat{M} = \gamma H_0, \) and \(\gamma \) = \(M_0/H_0 \). Working in the circular basis (4.1.1), show that the solution of this equation is:

\[
M_{ix} = \chi_0 \frac{\gamma}{\gamma + (\alpha + \alpha_H)} H_{ix} = \chi_0 H_{ix} \quad \text{and} \quad M_z = 0
\]

Writing \(B = \mu_0 (H + M) \), show that the permeability matrix has the gyromagnetic form of Eq. (4.4.2) with \(\mu_1 \pm \mu_2 = \mu_0 (1 + \chi_0) \) and \(\mu_3 = \mu_0 \). Show that the real and imaginary parts of \(\mu_1 \) are given by [750]:

\[
\begin{align*}
\text{Re}(\mu_1) &= \mu_0 + \frac{\mu_0 \chi_0}{2} \left(\frac{\alpha^2 + \omega_M (\alpha + \omega_M)}{2 \alpha^2 + (\omega_M + \omega_M)^2} + \frac{\alpha^2 - \omega_M (\omega - \omega_M)}{2 \alpha^2 + (\omega - \omega_M)^2} \right), \\
\text{Im}(\mu_1) &= -\frac{\mu_0 \chi_0}{2} \left(\frac{\alpha^2 + \omega_M (\omega + \omega_M)}{2 \alpha^2 + (\omega_M + \omega_M)^2} + \frac{\alpha^2 - \omega_M (\omega - \omega_M)}{2 \alpha^2 + (\omega - \omega_M)^2} \right)
\end{align*}
\]

Derive similar expressions for \(\text{Re}(\mu_2) \) and \(\text{Im}(\mu_2) \).

4. A uniform plane wave, \(E_{ix} \) and \(H_{ix} \), is propagating in the direction of the unit vector \(\hat{k} = \hat{x} \cos \theta + \hat{y} \sin \theta \) shown in Fig. 2.10.1 in a gyroelectric medium with constitutive relationships (4.4.1). Show that Eqs. (4.6.14)-(4.6.16) remain valid provided we define the effective refractive index \(N \) through the wavevector \(k = k_0 \hat{k}, \) \(k_0 = \sqrt{\epsilon_0 M_0} \).

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-

\[
\sqrt{\frac{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta}{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta}} \quad \text{(linear-polarization basis)}
\]

where \(\epsilon_1 = \epsilon_1 + \epsilon_2 \). Alternatively, show that in the linear-polarization basis:

\[
\frac{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta}{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta} \quad \text{(linear-polarization basis)}
\]

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-

\[
\sqrt{\frac{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta}{\epsilon_1 - \epsilon_0 \epsilon_2 \sin^2 \theta}} \quad \text{(linear-polarization basis)}
\]

Show that the two solutions for \(N^2 \) are:

\[
N^2 = \frac{(\epsilon_1^2 - \epsilon_2^2 - \epsilon_1 \epsilon_2 \sin^2 \theta + 2 \epsilon_1 \epsilon_2 \cos^2 \theta)}{2 \epsilon_0 (\epsilon_1 \sin^2 \theta + \epsilon_2 \cos^2 \theta)}
\]

(4.7.4)
For the special case $\mathbf{k} = \mathbf{z} (\theta = 0^\circ)$, show that the two possible solutions of Eq. (4.7.1) are:

\[\varepsilon_0 N^2 = \varepsilon_\perp, \quad k = k_\parallel = \omega \sqrt{\varepsilon_\perp}, \quad E_\perp = 0, \quad E_z = 0 \]

\[\varepsilon_0 N^2 = \varepsilon_\parallel, \quad k = k_\parallel = \omega \sqrt{\varepsilon_\parallel}, \quad E_\parallel = 0, \quad E_z = 0 \]

For the case $\mathbf{k} = \mathbf{x} (\theta = 90^\circ)$, show that:

\[\varepsilon_0 N^2 = \varepsilon_\parallel, \quad k = k_\parallel = \omega \sqrt{\varepsilon_\parallel}, \quad E_\parallel = 0, \quad E_z = 0 \]

\[\varepsilon_0 N^2 = \varepsilon_\perp, \quad k = k_\parallel = \omega \sqrt{\varepsilon_\perp}, \quad E_\perp = 0, \quad E_z = 0 \]

For each of the above four special solutions, derive the corresponding electric fields E. Justify the four values of N^2 for the special case $\mathbf{k} = \mathbf{z} (\theta = 0^\circ)$. This problem is the dual of Problem 4.14.

For the special case $\theta = 90^\circ$, show that:

\[\mu_0 N^2 = \mu_\perp, \quad k = k_\perp = \omega \sqrt{\mu_\perp}, \quad H_\perp = 0, \quad H_z = 0 \]

\[\mu_0 N^2 = \mu_\parallel, \quad k = k_\parallel = \omega \sqrt{\mu_\parallel}, \quad H_\parallel = 0, \quad H_z = 0 \]

For each of the above four special solutions, derive the corresponding magnetic fields H. Justify the four values of N^2 on the basis of Eq. (4.7.8). Discuss the polarization properties of the four cases. This problem is the dual of Problem 4.14.

4.16 Using Eq. (4.6.9) for the effective TM refractive index in a birefringent medium, show the following additional relationships:

\[\sin^2 \theta + \cos^2 \theta = 1 \]
\[1 - \frac{n_1^2}{N^2} = 1 - \frac{n_2^2}{N^2} \]
\[n_1 \sin^2 \theta + n_2 \cos^2 \theta = \frac{n_1^2 + n_2^2 - N^2}{N^2} \]
\[\sin^2 \theta = \frac{1 - n_1^2}{n_3^2} \cos^2 \theta = \frac{1 - n_2^2}{n_3^2} \]

\[\cos^2 \theta - \frac{n_1^2}{n_3^2} = - \frac{n_2^2}{n_3^2} \sin^2 \theta, \quad \sin^2 \theta - \frac{n_1^2}{n_3^2} = - \frac{n_2^2}{n_3^2} \cos^2 \theta \]

Using these relationships, show that the homogeneous linear system (4.6.20) can be simplified into the form:

\[E_2 \frac{n_1}{n_3} \sin \theta = - E_z \frac{n_3}{n_1} \cos \theta, \quad E_1 \frac{n_3}{n_2} \cos \theta = - E_z \frac{n_1}{n_3} \sin \theta \]