Chapter Five

Controllability and Observability

Controllability andobservabilityrepresentwo major conceptof moderncontrol
systemtheory. Theseoriginally theoreticalconcepts,introducedby R. Kalman
in 1960, are particularly importantfor practicalimplementations.They can be
roughly definedas follows.

Controllability: In order to be able to do whateverwe wantwith the given
dynamicsystenmunder control input, the systemmustbe contollable.

Observability: In order to seewhat is going on inside the systemunder
observation the systemmustbe observable

Eventhoughthe conceptf controllability and observabilityare almostab-
stractly defined,we now intuitively understandheir meanings. The remaining
problemis to producesomemathematicatheckup testsandto definecontrolla-
bility andobservabilitymorerigorously. Our intentionis to reducemathematical
derivationsand the numberof definitions, but at the sametime to derive and
definevery clearly both of them. In that respect,in Section5.1, we start with
observabilityderivationsfor linear discrete-timenvariant systemsand give the
correspondingddinition. The observability of linear discretesystemsis very
naturally introducedusing only elementarylinear algebra. This approachwill
be extendedto continuous-timesystemobservability, where the derivativesof
measurementfbservationshaveto be used,Section5.2. Next, in Sectionss.3
and 5.4 we define controllability for both discrete-and continuous-timelinear
systems.

In this chapterwe showthatthe conceptf controllability andobservability
are relatedto linear systemsof algebraicequations. It is well known that a
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222 CONTROLLABILITY AND OBSERVABILITY

solvablesystemof linear algebraicequationdhasa solutionif andonly if therank
of the systemmatrix is full (seeAppendix C). Observabilityand controllability
tests will be connectedto the rank tests of ceratin matrices, known as the
controllability and observability matrices.

At the end of this chapter,in Section5.5, we will introducethe concepts
of systemstabilizability (detectability),which standfor controllability (observ-
ability) of unstablesystemmodes. Also, we show that both controllability and
observabilityareinvariantundernonsingulartransformationsin addition,in the
samesectionthe conceptsof controllability and observabilityare clarified using
differentcanonicalforms, wherethey becomemore obvious.

The study of observabilityis closely relatedto observer(estimator)design,
a simple, but extremelyimportanttechniqueusedto constructanotherdynamic
system,the observer(estimator),which producesestimatesof the systemstate
variablesusing information aboutthe systeminputs and outputs. The estimator
designis presentedn Section5.6. Techniquedor constructingothfull-order and
reduced-ordeestimatorsare considered.A correspondingoroblemto observer
designis the so-calledpole placementproblem. It can be shown that for a
controllable linear system, the system poles (eigenvalues)can be arbitrarily
locatedin the complexplane. Sincethis techniquecanbe usedfor systemlinear
feedbackstabilizationandfor controllerdesignpurposesit will beindependently
presentedn Section8.2.

Severalexamplesare includedin order to demonstratgproceduredor ex-
amining systemcontrollability and observability. All of them can be checked
by MATLAB. Finally, we have designedthe correspondindaboratory experi-
mentby usingthe MATLAB packagewhich cancontributeto betteranddeeper
understandingf theseimportantmoderncontrol concepts.

Chapter Objectives

This chapterintroducesdefinitionsof systemcontrollability and observabil-
ity. Testingcontrollability and observabilityis replacedby linear algebraprob-
lems of finding ranks of certain matricesknown as the controllability and ob-
servability matrices. After masteringthe aboveconceptsand tests,studentswill
be ableto determinesysteminitial conditionsfrom systemoutputmeasurements,
underthe assumptionthat the given systemis observable.As the highlight of
this chapter studentswill learnhow to constructa system’sobserver(estimator),
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which for an observablesystemproduceshe estimatesf statevariablesat any
time instant.

5.1 Observability of Discrete Systems

Considera linear, time invariant, discrete-timesystemin the statespaceform
x(k+1) = Agx(k), x(0)=x,= unknown (5.1)
with output measurements
y(k) = Cax(k) (5.2)

wherex(k) € R, y(k) € R”. Ay andC, are constantmatricesof appropriate
dimensions.The naturalquestionto be askedis: canwe learneverythingabout
the dynamicalbehavior of the state spacevariablesdefinedin (5.1) by using
only informationfrom the outputmeasurement¢s.2). If we know x,, thenthe
recursion(5.1) apparentlygivesus completeknowledgeaboutthe statevariables
at any discrete-timeanstant. Thus,the only thing thatwe haveto determinefrom
the statemeasurements the initial statevectorx(0) = x,.
Since the n-dimensional vector x(0) has n unknown components, it

is expectedthat n measurementsare sufiicient to determine x,. Take
kE=0,1,....,n—11in (5.1) and (5.2), i.e. generatahe following sequence

y(0) = Cax(0)
y(l) = Cdx(l) = CdAdX(O)
y(2) = C4x(2) = C4A x(1) = C4AGx(0) (5.3)

y(n—1) = Cyx(n — 1) = C4A% 'x(0)

or, in matrix form

- y(O) 7 (np)x1 r Cd 1 (np)xn
y(1) CqA,
y(2) = | C4A] x x(0) (5.4)

y(n—1)] _CdAg_l |
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We know from elementarylinear algebrathat the systemof linear algebraic
equationswith n unknowns(5.4), hasa uniquesolutionif andonly if the system
matrix hasrank n. In this casewe need

Cq
CiAq
rank | CaA] | =n (5.5)

|CaA; ]

Thus, the initial conditionxg is completelydeterminedif the so-calledobserv-
ability matrix, definedby

[ Cy ] (np)Xn
CiA,
O(Aq,Cy) = | CaAj (5.6)
[CaA;™ ]
hasrank n, that is
rankQ =n (5.7)

The previousderivationscan be summarizedn the following theorem.

Theorem 5.1 Thelinear discrete-timesystem(5.1) with measuementy5.2)
is observabldf and only if the observabilitymatrix (5.6) hasrank equalto n.

A simple second-ordeexampledemonstrateshe procedurefor examining
the observabilityof linear discrete-timesystems.More complex examplescor-
respondingto real physical control systemswill be consideredn Sections5.7
and 5.8.

Example 5.1: Considerthe following systemwith measurements

ORI e
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The observabilitymatrix for this second-ordesystemis given by
Cqs | [T 2
CsA;| |7 10
Sincethe rows of the matrix O arelinearly independentthenrankQ = 2 = n,
i.e. the systemunder considerationis observable. Another way to test the

completenes®f the rank of squarematricesis to find their determinants. In
this case

0 =

detO = -4 #0 & fullrtank = n =2

<&

Example 5.2: Considera caseof an unobservablesystem,which can be
obtainedby slightly modifying Example5.1. The correspondingsystemand
measuremenmatricesare given by

1 =2

A, =
4 [—3 —4

], Cq=[1 2]

The observability matrix is

1 2
o=[ ]

sothatrank@ = 1 < 2, andthe systemis unobservable.

5.2 Observability of Continuous Systems

A linear, time invariant, continuoussystemin the statespaceform was studied
in Chapter3. For the purposeof studyingits observability, we consideran
input-free system

x(t) = Ax(t), x(tp) = X, = unknown (5.8)
with the correspondingmeasurements

y(t) = Cx(t) (5.9)
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of dimensionsx(t) € ", y(t) € ®7, A € R**", andC € RP*". Following the
sameargumentsasin the previoussection,we can concludethat the knowledge
of x, is sufficientto determinex(¢) atanytime instant,sincefrom (5.8) we have

x(t) = eAl=t)x (1) (5.10)

The problem that we are faced with is to find x(¢y) from the available mea-
surementg5.9). In Section5.1 we have solved this problemfor discrete-time
systemsby generatingthe sequenceof measurementat discrete-timeinstants
k =0,1,2,....n — 1, i.e. by producingrelationsgiven in (5.3). Note that a
time shift in the discrete-timecorrespondso a derivativein the continuous-time.
Thus,ananalogougechniqudn thecontinuous-timelomainis obtainedby taking
derivativesof the continuous-timemeasurementgs.9)

y(to) = Cx(to)
y(tg) = CX(to) = CAX(to)
¥(to) = Cxk(to) = CA*x(to) (5.11)

y™ (1) = Cx"V(ty) = CA" k(1)

Ourgoalis to generaten linearly independen&lgebraicequationsn » unknowns
of the state vector x(#p). Equations(5.11) comprisea systemof np linear
algebraicequations.They canbe put in matrix form as

y(to) 10 c qexn

y(to) CA

S’(to) = CA2 X X(to) = Ox(to) = Y(to) (512)
Ly (1) | CA™!

where O is the observability matrix already definedin (5.6) and where the
definitionof Y(#y) is obvious. Thus,theinitial conditionx(¢,) canbedetermined
uniquely from (5.12) if and only if the observability matrix has full rank, i.e.
rankO = n.

As expected,we have obtained the same observability result for both
continuous-and discrete-timesystems. The continuous-timeobservability the-
orem, dual to Theorem5.1, can be formulatedas follows.
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Theorem 5.2 The linear continuous-timesystem(5.8) with measuements
(5.9) is observablef and only if the observabilitymatrix hasfull rank.

It is importantto noticethataddinghigher-ordemderivativesin (5.12) cannot
increasethe rank of the observability matrix since by the Cayley—Hamilton
theorem(see Appendix C) for £ > n we have

n—1
AF =) oA (5.13)
1=0

so that the additional equationswould be linearly dependenbn the previously
definedn equations(5.12). The sameappliesto the discrete-timedomainand
the correspondingequationsgiven in (5.4).

Thereis no needto producea test examplefor the observability study of
continuous-timesystemssincethe procedurds basicallythe sameasin the case
of discrete-timesystemsstudiedin the previoussection. Thus, Examples5.1
and5.2 demonstratéhe presentegrocedurdn this casealso; however,we have
to keepin mind that the correspondingmatrices A and C describesystems
which operatein differenttime domains. Fortunately,the algebraicprocedures
are exactly the samein both cases.

5.3 Controllability of Discrete Systems

Considera linear discrete-timenvariant control systemdefinedby
x(k+ 1) = Agx(k) + Bgu(k), x(0)=x, (5.14)

The systemcontrollability is roughly definedas an ability to do whateverwe
want with our system,or in more technicalterms, the ability to transferour
systemfrom any initial statex(0) = x, to any desiredfinal statex(k{) = x;
in a finite time, i.e. for k1 < oo (it makesno senseto achievethat goal at
k1 = o0). Thus,the questionto be answereds: canwe find a control sequence
u(0),u(l),...,u(n — 1), suchthatx(k) = x;?

Let us startwith a simplified problem,namelylet us assumethat the input
u(k) isascalar,.e. theinputmatrix B, is avectordenotedoy b,. Thus,we have

x(k+ 1) = Agx(k) + bgu(k), x(0) =x, (5.15)
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Takingk = 0,1,2,...,n in (5.15), we obtainthe following setof equations
x(1) = Agx(0) 4+ bgu(0)
x(2) = Agx(1) + bgu(1) = A3x(0) + Azbgu(0) + bgu(1)

(5.16)
x(n) = Agx(0) + A7~ 'bau(0) + -+ + bgu(n — 1)
The last equationin (5.16) can be written in matrix form as
[u(n — 1)
u(n — 2)
(1)~ AJx(0) = [baiAsbai AT | 5.17)
u(1)
[ u(0) |

Note that [deAdde e EAglbd] is a squarematrix. We call it the contmolla-
bility matrix and denoteit by C. If the controllability matrix C is nonsingular,
equation(5.17) produceghe uniquesolution for the input sequenceiven by
[u(n — 1) ]
u(n — 2)
| = (x(n) - Alx(0)) (5.18)

Thus, for any x(n) = xy, the expression(5.18) determineshe input sequence
that transfersthe initial statex, to the desiredstatex; in n steps. It follows
that the controllability condition, in this case,is equivalentto nonsingularityof
the controllability matrix C.

In a generalcase,when the input u(k) is a vector of dimensionr, the
repetitionof the sameprocedureasin (5.15)—(5.17)leadsto

u(n —1)]
u(n —2)
x(n) — SX(O) = |By A By e EAS_IBd (5.19)
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The controllability matrix, in the generalvectorinput case,definedby
C(Ad,Bd) = |By EAdBd P EAg_le (5.20)

is of dimensionn x r - n. The correspondingsystem of n linear alge-
braic equationsin r - » unknownsfor n r-dimensionalvector componentsof
u(0),u(l),...,u(n — 1), given by

'u(n _ 1)‘ (TLT)X].

Cnx(nr) : = x(n) — Agx(()) =Xy — ASX(O) (5.21)

will have a solution for any x; if andonly if the matrix C hasfull rank, i.e.
rankC = n (seeAppendix C).

The controllability theoremis as follows.

Theorem 5.3 The linear discrete-timesystem(5.14) is contmollable if and
only if

rankC = n (5.22)

whete the contmllability matrix C is definedby (5.20).

5.4 Controllability of Continuous Systems

Studying the conceptof controllability in the continuous-timedomainis more
challengingthanin the discrete-timedomain. At the beginningof this sectionwe
will first apply the samestrategyasin Section5.3in orderto indicatedifficulties
that we arefacedwith in the continuous-timedomain. Then,we will showhow
to find a controlinput thatwill transferour systemfrom any initial stateto any
final state.

A linear continuous-timesystemwith a scalarinput is representedby

x=Ax+bu, x(t) =%, (5.23)
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Following the discussiorand derivationsfrom Section5.3, we have,for a scalar
input, the following set of equations

X = %x = Ax + bu
d2
X = —2x:A2x+Abu+b2l
dt (5.24)

i

x(™ = ;?x =A"x+ A" 'bu+ A" ?bi+ -+ bul* Y

The last equationin (5.24) can be written as

x(M(t) — A"x(t) =C : (5.25)

Note that (5.25) is valid for any ¢t € [tg,ts] with t; free but finite. Thus, the
nonsingularityof the controllability matrix C implies the existenceof the scalar
input function u(¢) andits n — 1 derivatives,for anyt < t; < oc.

For a vectorinput systemdual to (5.23), the abovediscussiornproduceghe
samerelationas(5.25)with the controllability matrix C given by (5.20) andwith
the input vector u(¢) € R, thatis

u(n,l)(t) 7 rnXl

crxmn : = xM (1) = A™x(t) = 7(t) (5.26)

It is well known from linear algebrathat in orderto havea solution of (5.26),
it is sufficient that

rankC = rank [C E’y(t)] (5.27)
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Also, asolutionof (5.26)existsfor any~y(t)—anydesiredstateatt—if andonly if
rankC = n (5.28)

Equations(5.25) and (5.26) establishrelationshipsbetweenthe state and
control variables. However,from (5.25) and (5.26) we do not have an explicit
answerabouta control function that is transferringthe systemfrom any initial
statex(ty) to any final statex(t¢;) = xs. Thus, elegantand simple derivations
for the discrete-timecontrollability problem cannotbe completely extendedto
the continuous-timedomain. Another approachwhich is mathematicallymore
complex,is requiredin this case. It will be presentedn the remainingpart of
this section.

From Section3.2 we know that the state spaceequationwith the control
input hasthe following solution

t
x(t) = eA(t_tU)x(to) + /eA(t_T)Bll(T)dT
to
At the final time ¢; we have
iy
x(t) = x5 = eAl)x (1) + / A=) Bu(r)dr
to

or
ty

e Alix; — e Mox(t) = /eATBu(T)dT
to
Using the Cayley—Hamiltontheorem(seeAppendix C), thatis

AT = Z a;(T)A’ (5.29)

whereo;(7), ¢ =0,1,...,n— 1, arescalartime functions,the previousequation
can be rewritten as

n—1 ty
e Alix; — e Abox(ty) = Z A'B / a;(T)u(r)dr
t=0

to
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or

e Alix; — e Alx(ty) = |[BIAB: --- A" 'B| | )

ty

[ an_1(r)u(r)dr
Lo i
On the left-hand side of this equationall quantitiesare known, i.e. we havea
constantvector. On the right-handside the controllability matrix is multiplied
by a vectorwhosecomponentsrefunctionsof the requiredcontrolinput. Thus,
we have a functional equationin the form

f
const"*! = C(A,B)™*"™" : ,  TE (to,tq) (5.30)
fr1(u(7))

A solutionof this equationexistsif andonly if rankC(A,B) = n, which is the
condition alreadyestablishedn (5.28). In general,it is very hard to solve this
equation.One of the many possiblesolutionsof (5.30) will be givenin Section
5.8 in termsof the controllability Grammian. The controllability Grammianis
definedby the following integral

t1
W (to,11) = / eAlte—T)BBT A" (to=7) g1 (5.31)

to

The results presentedn this sectioncan be summarizedin the following
theorem.

Theorem 5.4 Thelinear continuous-timesystenis controllable if and only if
the contmollability matrix C hasfull rank, i.e. rankC = n.

We have seenthat controllability of linear continuous-and discrete-time
systemsis given in termsof the controllability matrix (5.20). Examiningthe
rank of the controllability matrix comprisesan algebraiccriterion for testing
systemcontrollability. The examplebelow demonstrateshis procedure.
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Example 5.3: Given the linear continuous-timesystem

0 1 =2 0 -1
x=3 -4 5 |x+1(2 -3|u
-6 7 8 4 =5

The controllability matrix for this third-ordersystemis given by
C= [B :AB EAQB]

0o -1 : —6 7
=12 -3 : 12 —-10 : A’B
4 -5 : 46 —55 :

Since the first three columns are linearly independentwe can conclude that
rankC = 3. Hencethereis no needto compute A?B sinceit is well known
from linear algebrathat the row rank of the given matrix is equalto its column
rank. Thus,rankC = 3 = n implies that the systemunder considerationis
controllable.

5.5 Additional Controllability/Observability Topics

In this sectionwe will presenseveralinterestingandimportantresultsrelatedto
systemcontrollability and observability.

Invariance Under Nonsingular Transformations

In Section3.4 we introducedthe similarity transformationthat transforms
a given systemfrom one set of coordinatesto another. Now we will show
that both systemcontrollability and observabilityare invariant under similarity
transformation.

Considerthe vectorinput form of (5.23)and the similarity transformation

% = Px (5.32)
such that

};(:A}A(-FBH
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whereA = PAP~! andB = PB. Thenthe following theoremholds.

Theorem 5.5 Thepair (A, B) is contollable if andonly if the pair (A, B)
is contollable.

This theoremcan be proved as follows
¢(A,B) - [BEABE sAnlB]
= [PB :PAP 'PB:--. EPA”lPlPB]
= P[BEABE EA“IB] = PC(A,B)

SinceP is a nonsingulamatrix (it cannotchangethe rank of the productPC),
we get

rankC (A, B) =rankC(A,B)

which proves the theoremand establishescontrollability invariance under a
similarity transformation.

A similar theoremis valid for observability. The similarity transformation
(5.32) appliedto (5.8) and (5.9) produces

~

[l
Q >
>

<
I
>

where

Then, we havethe following theorem
Theorem 5.6 Thepair (A, C) is observabldf and only if the pair (A, C)
is observable.
The proof of this theoremis as follows
C CP! C
CA CP!PAP! CA
0(A,¢)=| CA? CP-'PA?P-! | — | CA? |p-!

I

CA"1 CP !PA" P! CA" 1
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that is,
0(A,C) = 0(A,0)P"!
The nonsingularityof P implies
rankQ (A, C) = rankO(A, C)

which provesthe statedobservabilityinvariance.

Note that Theorems5.5 and 5.6 are applicableto both continuous-and
discrete-timelinear systems.

FrequencyDomain Controllability and Observability Test

Controllability and observability have been introducedin the state space
domainas pure time domainconcepts. It is interestingto point out thatin the
frequencydomainthere existsa very powerful and simple theoremthat gives a
single condition for both the controllability and the observabilityof a system.
It is given below.

Let H(s) bethe transferfunction of a single-inputsingle-outputsystem
H(s)=c(sI—A) 'b

Note that [ (s) is defined by a ratio of two polynomials containingthe cor-
respondingsystempolesand zeros. The following controllability-observability
theoremis given without a proof.

Theorem 5.7 If there are no zeo-pole cancellationsn the transferfunction
of a single-inputsingle-outputsystemthenthe systemis both contmllable and
observablelf the zeo-polecancellationoccursin H (s), thenthe systenis either
uncontollable or unobservabler both uncontollable and unobservable.

A similar theorem can be formulated for discrete linear time invariant
systems.

Example5.4: Consideralinearcontinuous-timelynamicsystenrepresented
by its transferfunction

H(s) = (s+3) _ s+ 3
(s+1)(s+2)(s+3) s>+6s2+11s+6
Theorem 5.7 indicates that any state space model for this systemis either
uncontrollableor/andunobservableTo getthe completeanswerwe haveto go
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to a statespaceform andexaminethe controllability and observabilitymatrices.
One of the possiblemany statespaceforms of H (s) is asfollows

ﬁkl -6 —-11 -6 €T 1
{1'32 = 1 0 0 T2 | + 0fu
T3 0 1 0] |a3 0
o
Yy = [0 1 3 ] Z9
L¥3
It is easyto showthat the controllability and observabilitymatricesare given by
1 -6 25 0 1 3
c=10 1 -6, O0=|1 3 0
0 0 1 -3 —-11 -6
Since
detC=1#0 = rankC=3=n
and

detO =0 = rankO<3=n

this systemis controllable,but unobservable.
Note that, due to a zero-polecancellationat s = —3, the systemtransfer
function H(s) is reducibleto

1 1
H(s) =09 = oGy~ 743572

so that the equivalentsystemof ordern = 2 hasthe correspondingstatespace
form

-ilr _ -2 -3 T1r n 1 u

.fgr N 1 0 ZTor 0

_ xlr-
y=0 1][%_

For this reduced-ordesystemwe have

1 -2 0 1
e=ly 7] o= o]
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and thereforethe systemis both controllableand observable.

Interestinglyenough the last two mathematicamodelsof dynamicsystems
of ordern = 3 andn = 2 represenéxactlythesamephysicalsystem.Apparently,
the secondone (n = 2) is preferredsinceit can be realizedwith only two
integrators.

<

It can be concludedfrom Example5.4 that Theorem5.7 gives an answer
to the problem of dynamic systemreducibility. It follows that a single-input
single-outputdynamicsystemis irreducibleif andonly if it is both controllable
and observable.Sucha systemrealizationis called the minimal realization If
the systemis either uncontrollableand/or unobservableat can be represented
by a systemwhoseorder has beenreducedby removinguncontrollableand/or
unobservablenodes. It can be seenfrom Example5.4 that the reducedsystem
with n = 2 is both controllableand observableand henceit cannotbe further
reduced. This is also obviousfrom the transferfunction H.(s).

Theorem5.7 canbe generalizedo multi-input multi-output systemswhere
it plays very importantrole in the procedureof testingwhetheror not a given
systemis in the minimal realizationform. The procedurerequiresthe notion of
the characteristicpolynomial for proper rational matriceswhich is beyondthe
scopeof this book. Interestedreadersmay find all details and definitionsin
Chen (1984).

It is importantto point out thatthe similarity transformatiordoesnot change
the transferfunction as was shownin Section3.4.

Controllability and Observability of Special Forms

In somecases,it is easyto draw conclusionsabout systemcontrollability
and/or observabilityby examiningdirectly the statespaceequations. In those
caseghereis no needto find the correspondingontrollability and observability
matricesand check their ranks.

Considerthe phasevariable canonicalform with
X =Ax+ Bu
y = Cx

where
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0 1 0 0 0

0 0 1 0 0

A= : : g : , B=|:

0 0 0o .- 1 0

—ag —ay —ay - —0p q 1
C=[1 0 0 ... 0]

This form is both controllableandobservabledueto an elegantchainconnection
of the statevariables. The variable z,(¢) is directly measuredso that z(t)

is known from z(t) = @1(t). Also, z3(t) = &2(t) = #i(t), and so on,

Tn(t) = x£”_1)(t). Thus, this form is observable. The controllability follows

from the fact that all statevariablesare affectedby the controlinput, i.e. z,, is

affecteddirectly by u(¢) andthend,_4(t) by z,(u(t)) andso on. The control
input is able to indirectly move all statevariablesinto the desiredpositionsso
that the systemis controllable. This can be formally verified by forming the
correspondingcontrollability matrix and checkingits rank. This is left as an
exercisefor students(seeProblem5.13).

Anotherexamples themodalcanonicaform. Assumingthatall eigenvalues
of the systemmatrix are distinct, we have

x=Ax+Tu
y = Dx
where
A 0 -0 71
I I T N
0 0 An Yn

D =[61 62 -+ b6n)
We are apparentlyfacedwith » completelydecoupledfirst-order systems.Ob-
viously, for controllability all v;, 7 = 1,...,n, must be different from zero,
so that each state variable can be controlled by the input u(¢). Similarly,
0; #0,¢=1,...,n, ensuredbservabilitysince,dueto the statedecomposition,
eachsystemmust be observedindependently.
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The Role of Observability in Analog Computer Simulation

In additionto applicationsn control systemtheoryand practice the concept
of observabilityis usefulfor analogcomputersimulation. Considerthe problem
of solving an nth-order differential equationgiven by

m

V13 gD = 3 byl
=0

=1
with known initial conditionsfor (0), 5(0), ...,y 1(0). This systemcan be
solved by an analogcomputerby using »n integrators. The outputsof thesen
integratorsrepresenthe statevariableszy, z3, ..., 2., Sothatthis systemhasthe
state spaceform

x = Ax+ bu, x(0)= unknown
Yy =cX
However, the initial condition for x(0) is not given. In other words, the
initial conditionsfor the consideredsystemof » integratorsare unknown. They

can be determinedirom y(0), §(0), ...,y *~1(0) by following the observability
derivationsperformedin Section5.2, namely

x(0) = cAx(0) + cbu(0)
§(0) = cx(0) = cA*x(0) + cAbu(0) + cbu(0)

yV(0) = ex""D(0) = cA"1x(0) + cA" 2bu(0)
+cA™ 2bu(0) 4 - - - + cAbu™ ) (0) 4+ cbu" 2 (0)
This systemcan be written in matrix form as follows

y(0)
y(-O) —0-x(0)+T "(:0) (5.33)
S 1(0) u(v-2)(0)

where O is the observability matrix and 7 is a known matrix. ~Since
u(0),4(0), ..., u"1)(0) are known, it follows that a unique solution for x(0)
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existsif and only if the observabilitymatrix, which is squarein this case,is
invertible, i.e. the pair (A,c) is observable.

Example 5.5: Considera systemrepresentedy the differential equation

d*y dy du
— 2 442 p 4y = — 0)=2, g(0)=1 H=e* t>0

Its state spaceform is given by
. 0 1 0
)(_Ax—l—bu_[_4 _4]x—|—[1]u
y=cx=[1 1]x
The initial conditionfor the statespacevariablesis obtainedfrom (5.33) as

e[ 0= o] = o] = ] 1

11 ]2 _[zi(0)] -6
L Spo=[] = o= [0 =[]
This meanghatif analogcomputersimulationis usedto solvethe abovesecond-

order differential equation,the initial conditionsfor integratorsshouldbe setto
—6 and 8.

leading to

Stabilizability and Detectability

So far we havedefinedand studiedobservabilityand controllability of the
completestatevector. We haveseenthat the systemis controllable(observable)
if all componentof the statevector are controllable (observable). The natural
guestionto be askedis: do we really needto control and observeall state
variables?In someapplicationsit is sufficient to take careonly of the unstable
component®f the statevector. This leadsto the definition of stabilizability and
detectability.

Definition 5.1 A linear system(continuousor discrete)is stabilizableif all
unstablemodesare contollable.
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Definition 5.2 A linear system(continuousor discrete) is detectableif all
unstablemodesare observable.

The conceptf stabilizability and detectabilityplay very importantrolesin
optimal controltheory,andhencearestudiedin detailin advancedontroltheory
courses.For the purposeof this course,it is enoughto know their meanings.

5.6 Observer (Estimator) Design?!

Sometimesll statespacevariablesarenot availablefor measurementsy it is not
practicalto measureall of them,or it is too expensiveto measureall statespace
variables. In orderto be able to apply the statefeedbackcontrol to a system,
all of its state spacevariables mustbe available at all times Also, in some
control systemapplicationspneis interestedn havinginformationaboutsystem
statespacevariablesat any time instant. Thus, oneis facedwith the problem
of estimatingsystemstate spacevariables. This can be done by constructing
anotherdynamical systemcalled the observeror estimator, connectedto the
systemunderconsiderationywhoserole is to producegood estimatef the state
spacevariablesof the original system.

The theory of observersstartedwith the work of Luenbeger (1964, 1966,
1971) so that observersare very often called Luenbeger observers.According
to Luenbeger, any systemdriven by the outputof the given systemcan serve
asan observerfor that system. Two main techniquesare availablefor observer
design. The first one is usedfor the full-order observerdesignand produces
an observerthat has the samedimensionas the original system. The second
techniqueexploitsthe knowledgeof somestatespacevariablesavailablethrough
the output algebraicequation (systemmeasurements3o that a reduced-order
dynamicsystem(observer)s constructednly for estimatingstatespacevariables
that are not directly obtainablefrom the systemmeasurements.

5.6.1 Full-Order Observer Design

Considera linear time invariant continuoussystem
x(t) = Ax(t) + Bu(t), x(t{) = x, = unknown
y(t) = Cx(1)

1 This sectionmay be skippedwithout loss of continuity.

(5.34)
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wherex € R, u € R, y € R with constantmatrices A,B,C having
appropriatedimensions.Sincefrom the system(5.34) only the outputvariables,
y(t), are availableat all times, we may constructanotherartificial dynamic
systemof order n (built, for example,of capacitorsand resistors)having the
samematricesA, B, C

X(t) = A%(1) + Bu(t), %(to) = %,
y(t) = Cx(1)

and comparethe outputsy(t) and y(¢). Of coursethesetwo outputswill be
differentsincein the first casethe system’sinitial conditionis unknown,andin
the secondcaseit hasbeenchosenarbitrarily. The differencebetweenthesetwo
outputswill generatean error signal

(5.35)

y(t) — §(t) = Cx(t) — Cx(t) = Ce(t) (5.36)

which can be usedas the feedbacksignal to the artificial systemsuchthat the
estimation(observationkerrore(t) = x(t) — %(t) is reducedasmuchaspossible.
This can be physically realizedby proposingthe system-observestructureas
given in Figure 5.1.

u y=Cx
B > System
Ce +
K
F
Observer
y=Cx
‘ X=X

Figure 5.1: System-observer structure
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In this structureK representghe observergain and hasto be chosensuch
that the observationerror is minimized. The observeralonefrom Figure 5.1 is
given by

%(1) = A%(1) + Bu(t) + K(y(t) — (1)) = Ax(¢) + Bu(t) + KCe(t) (5.37)

From (5.34) and (5.37) it is easyto derive an expressionfor dynamicsof the
estimation(observation)error as

e(t) = (A — KC)e(t) (5.38)

If the observergain K is chosensuchthat the feedbackmatrix A — KC is
asymptoticallystable then the estimationerror e(¢) will decayto zerofor any
initial condition e(?y). This can be achievedif the pair (A, C) is observable.
More precisely,by taking the transposeof the estimationerror feedbackmatrix,
i.e. AT — CTKT, we seethatif the pair (AT, CT) is controllable,then we
can do whateverwe want with the system,and thus we can locateits polesin
arbitrarily asymptoticallystablepositions. Note that controllability of the pair
(AT, CT) is equalto observabilityof the pair (A, C), seeexpressiongor the
observabilityand controllability matrices.

In practicethe observempolesshouldbe chosento be abouttentimesfaster
thanthe systempoles. This canbe achievedby settingthe minimal real part of
observereigenvalueso betentimesbiggerthanthe maximalreal partof system
eigenvaluesthat is

|Re{/\min}|obsm‘ver > 10|R6{Ama$}|system

Theoretically the observercanbe madearbitrarily fastby pushingits eigenvalues
far to the left in the complex plane, but very fast observersgeneratenoisein
the system. A proceduresuggestingan efficient choice of the observerinitial
conditionis discussedn Johnson(1988).

It is importantto point out that the system-observestructurepreserveghe
closed-loopsystempoles that would have beenobtainedif the linear perfect
statefeedbackcontrol had beenused. The system(5.34) underthe perfectstate
feedbackcontrol,i.e. u(t) = —Fx(t) hasthe closed-loopform as

(1) = (A — BF)x(1) (5.39)
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so that the eigenvaluef the matrix A — BF arethe closed-loopsystempoles
under perfect statefeedback. In the caseof the system-observestructure,as
given in Figure 5.1, we seethat the actual control appliedto both the system
and the observeris given by

u(t) = —Fx(t) = -Fx(¢) + Fe(t) (5.40)
so that from (5.34) and (5.38) we have

X A — BF BF X
-1 a2k 64
Sincethe statematrix of this systemis upperblock triangular,its eigenvaluesire

equalto theeigenvaluesf matricesA —BF andA —KC. A very simplerelation
amongx, e, andx canbe written from the definition of the estimationerror as

o=l SR -G s

Note that the matrix T is nonsingular. In orderto go from xe-coordinateso
xX-coordinatesve haveto usethe similarity transformationdefinedin (5.42),
which by the main property of the similarity transformationindicatesthat the
sameeigenvaluesj.e. A(A — BF) and A\(A — KC), are obtainedin the xx-
coordinates.

Thisimportantobservatiorthatthe system-observearonfiguratiorhasclosed-
loop polesseparatedto the original systemclosed-loogpolesunderperfectstate
feedbackand the actual observerclosed-looppolesis known asthe separation
principle.

5.6.2 Reduced-Order Observer (Estimator)

In this sectionwe show how to constructan observerof reduceddimension
by exploiting knowledgeof the output measuremeng¢quation. Assumethat the
output matrix C hasrank [, which meansthat the output equationrepresents

linearly independentlgebraicequations. Thus, equation

y(t) = Cx(1) (5.43)

produces! equationsfor » unknownsof the statespacevector x(¢). Our goal
is to constructan observerof ordern — [ for estimationof the remainingn — [
state spacevariables.
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Thereduced-ordeobserverdesignwill be presentecgccordingto theresults
of Cumming (1969) and Gopinath (1968, 1971). The procedurefor obtaining
this observeris not unique,which is obviousfrom the next step. Assumethat
a matrix C; exists suchthat

rank [((;1] =n (5.44)

and introducea vectorp € ®' as
p(t) = Cix(1) (5.45)

From equations(5.43) and (5.45) we have

- [&] )

Sincethe vector p(t) is unknown,we will constructan observerto estimateit.
Introduce the notation

[C ]_1 —[L, L] (5.47)

so that from (5.46) we get
x(t) = L1y(t) + L2p() (5.48)

An observerfor p(t) canbe constructedby finding first a differential equation
for p(t) from (5.45), that is

p = Clx = ClAX + ClBll = ClALgp + ClALly + ClBu (549)

Notethatfrom (5.49)we arenot ableto constructan observerffor p(#) sincey(t)
doesnot containexplicit informationaboutthe vectorp(t), butif we differentiate
the output variablewe get from (5.34) and (5.48)

y = Cx = CAx + CBu = CAL,p + CAL,y + CBu (5.50)

i.e. y(t) carriesinformation aboutp(t).
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An observeffor p(t), accordingto the observerstructuregivenin (5.37),is
obtainedfrom the last two equationsas

p = CLALsp + C1 ALy + C;Bu + K (y - 9) (5.51)

where K; is the observergain. If in equation(5.50) we replacep(t) by its
estimate,we will have

y = CAL;p + CAL;y + CBu (5.52)
so that

p = C1ALyp 4+ C;ALyy + C;Bu + K (y — CAL;p — CAL;y — CBu)
(5.53)
Sinceit is impracticaland undesirableto differentiatey(¢) in orderto gety(¢)
(this operationintroducesnoisein practice),we take the changeof variables

q=p-Kiy (5.54)
This leadsto an observerfor g(¢) of the form
a(t) = A4a(t) + Bou(t) + K,y(1) (5.55)

where

A, =C/AL, - K,CAL,;, B,=C;B-K;CB

5.56
K, = CiAL;K, + C;AL; - K;CAL, - K;CAL;K; ( )

It is left asanexerciseto studentgseeProblem5.18)to derive(5.55)and(5.56).
The estimateof the original systemstatespacevariablesare now obtainedfrom
(5.48) and (5.53) as

X(t) = Lyy(t) + Lap(t) = Laq(t) + (Ly + LKy )y (5.57)

The obtainedsystem-reduced-observsiructureis presentedn Figure5.2.

Thereareotherwaysof constructinghe systemobserverglLuenbeger,1971;
Chen, 1984). The readerparticularly interestedin observersis referredto a
specializedbook on observerdor linear systemgO’Reilly, 1983).
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u y
B > System
Ke| <
A
= B, Ly+LoK,y
/ > Reduced 9.0 +
2
observer
¢>A< =X

Figure 5.2: System-reduced-observer structure

5.7 MATLAB Case Study: F-8 Aircraft

In the caseof high-ordersystems(n > 3), obtainingthe controllability and ob-
servabilitymatricesis computationallyery involved. The MATLAB packagdor
computer-aideatontrol systemdesignand its CONTROL toolbox help to over-
comethis problem. Moreover,useof MATLAB enablesa deepemunderstanding
of controllability andobservabilityconcepts.Considerthe following fourth-order
model of an F-8 aircraft studiedin Teneketzisand Sandell(1977), Khalil and
Gajic (1984), Gajic and Shen(1993). The aircraft dynamicsin continuous-time
is describedby the following matrices

—0.0135700 -32.2 —46.300 0.0000
A 0.0001200 0.0 1.214 0.0000
—0.0001212 0.0 —-1.214  1.0000
0.0005700 0.0 -9.010 —-0.6696

B =[-0.433 0.1394 —0.1394 —0.1577]7
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By using the MATLAB function ct r b (for calculationof the controllability
matrix C) and obsv (for calculationof the observabilitymatrix O), it canbe
verified that this systemis both controllableand observablepamely

rankC*** = 4, rankO®** =4
By usingthe MATLAB functiondet (to calculatea matrix determinant)we get
detC = —6.8690

SincedetC is far from zeroit seemsthat this systemis well controllable(the
controllability magin is big).

If we discretizethe continuous-timanatricesA andB by usingthe sampling
period AT = 0.1, we geta somewhatsurprisingresult. Namely

det C(Ay, By)|at=01 = —4.5381 x 10717

Thus, this discrete systemis almost uncontrollable. Theoretically, it is still
controllablebut we needan enormousamountof enegy in orderto control it.
For example let the initial conditionbex(0) =[1 1 1 1] andlet the final
statex(4) be the coordinateorigin. Then, by (5.18), the control sequencehat
solvesthe problemof transferringthe systemfrom x(0) to x(4) = 0, obtained
by using MATLAB is

u(1) 3.1682

u(2) ~ | —9.7464
— 10

u(3) 0" 1 g 9944

u(4) 3.4163

Apparently, this resultis unacceptableand this discretesystemis practically
uncontrollable.

Note that the eigenvaluesof the continuous-timecontrollability Gram-
mian (5.31), obtained by using the MATLAB function gr am have values
7.48 x 10%, 0.42, 0.037, 0.0068. The eigenvaluef the contmollability Gram-
mian are the bestindicators of the controllability measue. Sincetwo of them
are very closeto zero, the original systemis very badly conditionedfrom the
controllability point of view eventhoughdetC(A,B) is far from zero. The
interestedreadercan find more aboutcontrollability and observabilitymeasures
in a very comprehensivgaperby Muller and Weber (1972).
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5.8 MATLAB Laboratory Experiment
Part 1. The controllability staircaseform of the system
x = Ax + Bu
y =Cx

clearly distinguishescontrollableanduncontrollablepartsof a control system.lt
can be obtainedby the similarity transformationandis definedby

Xe _ AC A12 Xc + Bc u
}‘(?'LC B 0 A’)’LC x’i’LC 0

S c o [XC ] (5.58)

XTLC

wherex, arecontrollablemodes.andx,. areuncontrollablemodes.Apparently,
in this structurethe input u cannotinfluencethe statevariablesx,,.; hencethese
areuncontrollable.Similarly, one candefinethe observabilitystaircasdorm as

5(0 _ Ao 0 XO -l— BO
kno B A21 Ano Xno Bno "

yZ[COO][XO]

XTLO

(5.59)

with x, observableandx,, unobservableDue to the fact that only x, appears
in the outputandthat x, and x,,, are not coupledthroughthe stateequations,
the statevariablesx,,, cannotbe observed.

Usethe MATLAB functionsct r bf (controllablestaircasdorm) andobsvf
(observablestaircaseform) to get the correspondingorms for the system

(1 2 3 4 5 6 ] M1 17

-1 -2 -3 -4 -5 -6 -1 1

0 0 0 0 0 0 1 -1

A= 1 1 1 1 1 L’ B= 0 0
2 2 2 2 2 2 1 2

-1 0 2 -1 0 2 | -2 1 ]

C=[-11 -1 0 -2 2]
Identify the correspondingsimilarity transformation.
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Part 2. Derive analytically that the transferfunction of (5.58) is givenin
terms of the controllableparts,i.e. it is equalto

H.(s) = C.(sI—A.) 'B.=H(s) =C(sI- A) 'B (5.60)

Clarify your answerby using the MATLAB function for the transferfunction
ss2zp, i.e. showthat both transferfunctionshavethe samegains, poles,and
zeros(subjectto zero-polecancellation).

Do the samefor the observablestaircaseorm, i.e. showthat
H,(s) = C,(sI - A,) 'B, = H(s) (5.61)

and justify this identity by usingthe MATLAB functionss2zp.

Part 3. Examinethe controllability and observabilityof the power system
composedf two interconnectedreasconsideredn Geromeland Peres(1985)
and Shenand Gajic (1990)

0 055 0 0 0 —-55 0 0 0 7
0 0 1 0 0 0 0 0 0
0 —33 —005 6 0 33 0 0 0
0 0 0 -33 33 0 0 0 0
A=10 0 52 0 —13 0 0 0 0
0 0 0 0 0 0 1 0 0
0 33 0 0 0 —33 —005 6 0
0 0 0 0 0 0 0 —33 3.3
0 0 0 0 0 0 -52 0 —13]
B:0000130000T
0000 0 00 0 13
1 043 0 0 0 0 0 0 0
c_ |0 0 010 0 000
1 0 0 0 0 043 0 0 0
0O 0 000 0 010

Part 4. Follow the stepsusedin Section5.7, but this time for the F-15
aircraft, whosestatespacemodelwas presentedn Examplel.4. Considerboth
the subsonicand supersonidlight conditions. Commenton the resultsobtained.
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Part 5. The controllability Grammianis definedin (5.31) as

ty
W(to,t1) = /eA(tUT)BBTeAT(t°T)dT

to

(a) Show analytically that the control input given by
u(t) = _BTeAT(toft)Wfl(t()’tl) |:X(t0) _ eA(tafh)x(tl)] (5.62)

will drive any initial statex(t) into any desiredfinal statex(t;) = x;. Notethat
underthe controllability assumptionmanycontrolinputscanbe foundto transfer
the systemfrom the initial to the final state. The expressiongivenin (5.62) is
alsoknown asthe minimum enegy control (Klamka, 1991) sincein additionto
driving the systemfrom x(y) to x(¢1) = xy, it alsominimizesanintegralof the
squareof the input (enegy), u” (t)u(t), in the time interval (to, ;).

(b) Using the MATLAB function gr am find the controllability Grammian
for the systemdefinedin Part4 for ¢t = 0 and#; = 1. One of several
known controllability testsstatesthat the systemis controllable if and only if its
contollability Grammianis positivedefinite(Chen,1984; Klamka, 1991). Verify
whetheror not the controllability Grammianfor this problemis positive definite.

(c) Find the control input u(¢) that drives the systemdefinedin Part 4
from the initial conditionx(0) =[0 0 0 0 0]” to the final statex(1) =
111 1"

Part 6. By duality to the controllability Grammian, the observability
Grammianis definedas

t1
V(to, ty) = / e A=) T CeAle—7) g7 (5.63)

to

Notethatthe observabilityGrammianis in generala positive semidefinitematrix.
It is knownin the literature on observabilitythat if and only if the observability
Grammianis positivedefinite,the systenis observablgChen,1984). Checkthe
observabilityof the systemgivenin Part3 by usingthe observabilityGrammian
test.
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5.10 Problems

5.1 Testthe controllability and observabilityof the following systems

1 -2 1
a=[) 2 m=[] emn -
2 -1 0 -1
A=0 1 0|, B=|0 |, C=[1 0 0]
1 0 -1 1
5.2 Find the valuesfor parameters,, b;, and bs suchthat the given system
is controllable

1 0 -1 by 0
A=1]0 2 0|, B=|0 b
-2 0 3 bs 0

5.3 Find the valuesfor parameters:; and ¢, suchthat the following system
is observable



254

54

55

5.6

5.7

5.8

CONTROLLABILITY AND OBSERVABILITY
If the output vector of the correspondingdiscrete systemis given by
y(0) y(1)] =[1 2], find the system’sinitial condition.

Verify that all columnsof the matrix
3

0 1 0
A’=1-2 3 1
-1 0 1

canbe expresse@sa linear combinationof the columnsforming matrices
I, A, and A? (seeb5.13).

Assumingthat the desiredfinal stateof a discretesystemrepresentedby

0 1 0 0 1
A=|-2 3 1|, B=|1], x(0)= |1
-1 0 1 2 1

isx(3)=[0 —1 1] find the control sequencehat transfersthe system
from x(0) to x(3).

Find a solutionto Problem5.5 in the caseof a two-input systemthat has
the input matrix

0 1
B=|-1 0
0 2

The remainingelementsare the sameasin Problem5.5.
Determineconditionson by, b, ¢1, and ¢z suchthat the following system

is both controllableand observable

11 by B
0 1:|7 B_|:b2:|7 C_[Cl 62]

Assumethat the input to this systemis known. Find the initial conditions
of this systemin termsof the given input in the casewhenthe measured
outputis y(t) = e ‘cos(t).

A =

Using the frequencydomain criterion, check the joint controllability and
observabilityof the system

1 0 2 1
A=|-1 0 0|,B=|0]|, C=[1 1 0]
1 20 ~1
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5.9 Findtheinitial conditionsof all integratorsn ananalogcomputersimulation
of the following differential equation

Py dr, _du de
a T TPu YT ur T w

+u
2
0= 250 = 2
5.10 The transferfunction of a systemgiven by
C(s) _ 10(s + 1)(s+ 3)(s + 5)
R(s) s(s+2)(s+4)(s+5)
indicateghatthis systemis eitheruncontrollableor unobservableCheckby

the rank test, after a zero-polecancellationtakesplace, that the remaining
systemis both controllableand observable.

=1

5.11 A discretemodel of a steampower systemwas consideredn Mahmoud
(1982) and Gajic and Shen(1993).
(a) Using MATLAB, examinethe controllability and observabilityof this
system,representecdy

0.915 0.051 0.038  0.015 0.038
—-0.030 0.889 —0.001 0.046 0.111
Ag;=|-0.006 0.648 0.247 0.014 0.048
—-0.715 -0.022 —-0.021 0.240 -0.024
—-0.148 —0.003 —=0.004 0.090 0.026

B, = [0.010 0.122 0.036 0.562 0.115]"

Cd:[l 1 0 0 0]

0 01 11

(b) Find the systemtransferfunction andjustify the answerobtainedin (a).

5.12 Using MATLAB, examinethe controllability of the magnetictape control
systemconsideredn Chow and Kokotovi¢ (1976)

0 0.40 0.000 0.00 0
0 0.00 0.349 0.00 0
A= 0 —-524 —-4.65 262 |’ B= 0

0 0.00 0.000 -10.00 10
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5.13 Find the controllability matrix of the systemin the phasevariablecanonical
form and show that its rank is alwaysequalto n.

5.14 Linearizethe given systemat the nominal point (21, 2., un) = (1,0, k)
and examinesystemcontrollability and observabilityin termsof k

i = ziu, z1(0) =1
To = x1T9 + U, SCQ(O) =0
y=12x1

5.15 Find the statespaceform of a systemgiven by

dy  d%y dy du
CY LYYy,
a T gt gt

andexaminesystemcontrollability andobservabilityin termsof k. Do they
dependon the choice of the statespaceform?

5.16 Given a linear systemdescribedby

d*y dy du dy(0)
W‘i‘?%‘}'y—ﬂ‘}'u: y(0) =0, —a =2

Transferthis differentialequationinto a statespaceform anddeterminethe
initial conditionsfor the statespacevariables.Canyou solve this problem
by using an unobservablestatespaceform? Justify your answer.

5.17 Checkthat the matrix A givenin (4.36) and the matrix C = /Q defined
in (4.39) form an observablepair.

5.18 Derive formulas(5.55) and (5.56) for the reduced-ordepbserverdesign.

5.19 Using MATLAB, examinethe controllability of a fifth-order distillation
column consideredn Petkovet al. (1986)

—-0.194 0.0628 0 0 0
1.306 —2.132  0.9807 0 0
A= 0 1.595  —3.149 1.547 0

0 0.0355  2.632 —4.257 1.855
0 0.00227 0 0.1636 —0.1625

B— 0 0.0632 0.0838 0.1004  0.0063 1%
|0 0 -0.1396 —-0.2060 —-0.0128
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5.20 Examineboth the controllability and observabilityof the robotic manipula-
tor acrobotwhosestatespacematricesare given in Problem3.2.

5.21 Repeatproblem5.20for the industrialreactordefinedin Problem3.26.

5.22 Considerthe statespacemodel of the flexible beamgivenin Example3.2.
Find the systemtransferfunction and determineits polesand zeros. Use
Theoremb5.7 to check the controllability and observability of this linear
control system.

5.23 The systemmatrix for a linearizedmodelof the invertedpendulumstudied
in Section1.6is givenin Section4.2.3. Using the samedataasin Section
4.2.3, the input matrix is obtainedas

B=0 1 0 -2]7

Examinethe controllability of this inverted pendulum.

5.24 A systemmatrix of a discrete-timemodelof anunderwatewrehicleis given
in Problem4.22. Its input matrix is given by Longhi and Zulli (1995)

[ 0.0258  —0.0002 0 7
0.1023  —0.0010 0
—0.0001  0.0258 0

B=1_0.0008 0.1023 0
0 0 0.0055
0 0 0.0221 |

Checkthe controllability of this system.



